Siemens Digital Industries Software

Out of the
Verification Crisis

Improving RTL Quality

Executive summary

A verification crisis is upon us that will not be solved solely through
improvements in verification methodologies and techniques. The solution
requires a holistic and philosophical change in the way we approach
design with a foundation based on bug prevention. Our proposed first step
in implementing this change tightly integrates static analysis into the
design process, resulting in a decrease in bug density, which has a positive
impact on downstream processes and consequently reduces cost.

Harry Foster — Siemens Digital Industries Software

siemens.com/eda

White paper | Out of the Verification Crisis: Improving RTL Quality

The Crisis

In 1997, SEMATECH set off an alarm in the industry when it warned that IC manufacturing productivity gains

were increasing at a 40% CAGR, while IC design productivity gains increased at only a 20% CAGR. This concern
was reiterated in the International Technology Roadmap for Semiconductors 1999 report [1]. Despite these alarms
concerning the gap between silicon capacity and design capabilities, the industry avoided this crisis. Why? There
were two primary contributors that prevented the design productivity gap: (1) continual improvements in design
automation and (2) the emergence of a silicon IP economy that fueled a productive design reuse strategy [2].

In the last decade, a more ominous productivity gap has emerged with respect to verification. While silicon
complexity grows at the Moore’s Law rate, verification complexity grows at a significantly greater rate , and the
approaches that were used to close the design productivity gap will be insufficient in closing the verification
productivity gap. IBS [3] quantified the impact of today’s verification gap in terms of IC project’s verification and
validation cost with respect to decreasing process node feature size, as shown in Fig. 1.

Additional industry studies have measured the verification productivity gap’s impact on IC projects, such as the
2020 Wilson Research Group functional verification study [4]. For example, since 2007, the mean peak number of
design engineers working on a proj-
ect has increased by 32%, while the
mean peak number of verification
engineers has increased by an alarm-
ing 143%. In fact, today there are
more verification engineers on aver-
age working on an ASIC/IC project
than design engineers. Yet even with
the increase in project headcount,
66% of all ASIC/IC projects experi-
ence one or more respins, while 83%
of FPGA projects experience one or

.. . $9.7
more non-trivial bug escapes into
A .. g5d $21.3
production [5]. In addition, two . $11.0 .
0

$150

$125

$100

Mainstream Design Cost ($M)
©“ ©»
a ~
o o

©
N
3

thirds of all ASIC/IC and FPGA proj- 28nm 16nm

ects miss their originally planned = Verification mValidation
schedule. Clearly, a verification crisis Sourco: 1BS Repor, Design Activiies and Strategies Implications, July 2020

is upon us.

Fig. 1. IC verification and validation cost by process node feature size.

The Problem

In the 1990s, many projects began to organize into separate design and verification teams for two reasons: (1) to
ensure an independent team interpretation of the specification that would assist in flushing out design errors and
(2) the complexity of verification environments increased and required unique engineering skills to create them.
While this project organizational change had a positive impact on identifying bugs associated with a misinterpreta-
tion of the specification, it has also led to a fallacy that quality can be verified into a product, and that the verifica-
tion team is exclusively responsible for functional quality.

W. Edwards Deming in his landmark book Out of the Crisis revealed that
“quality cannot be inspected into a product; it must be built into it [6].”
Deming was famous for conducting exercises in his quality management
training courses. To illustrate his point about quality, he filled two wooden
containers with white beads and then added a handful of red beads to
represent bugs. He then divided his class into two groups and gave each
group one of the wooden containers with a paddle to remove the red

Quality cannot be inspected into

a product; it must be built into it.

1 In theory, verification complexity grows at a double exponential rate; but in practice, it grows closer
to a quadradic rate, which is a significantly greater rate than the growth of design complexity.

Siemens Digital Industries Software 2

White paper | Out of the Verification Crisis: Improving RTL Quality

beads. His professed plan was to reward the group that removed the
greatest number of red beads and penalize the other group. While there
were numerous process management lessons learned through this exer-
cise, a profound outcome was uncovered. After the exercise, each group Bug prevention must become the
shared their experiences and chiefly focused on the techniques they foundation of the design process.
developed to remove the red beads. Deming, however, told the class that
they missed the point. It didn't matter if you rewarded or punished a
group in terms of how effectively they removed the red beads: the results
were, in all practicality, the same because some red beads remained. His
profound takeaway was that finding an optimal process to remove the red beads was not the solution. The real
solution was to not put the red beads in the wooden container in the first place. This wisdom is applicable to IC
design today.

An industry analysis of IC-respin root causes has revealed cases where not only complex corner case bugs are
escaping into production, but also trivial bugs. For example, even after billions of cycles of coverage-driven, con-
strained-random simulation, combined with directed testing, one high-end server project in the analysis experi-
enced an “out-of-range indexing” error that resulted in data corruption. This simple, yet costly respin could have
been avoided if the design engineer simply ran lint on the RTL code prior to checking it in. Without question, this
outlier is an extreme case. Yet even if this simple RTL bug was caught prior to tape out, the cost of triaging, debug-
ging, and redesigning, followed by additional verification is significantly higher when caught later in the develop-
ment lifecycle.

To help understand the cost impact
on a project, in Fig. 2 we quantify
the cost multipliers associated with
[41kx | finding and fixing bugs at various
stages in the development lifecycle.
In earlier stages of a project, the
so0000 cost is predominately due to labor
510,000 and other resource expenses. Notice
o] that a bug found at the IP verifica-
$1,000 [| tion stage is 8x more costly than if
found at the coding stage. This is
$100 due to the increase in resources
oo required to identify and triage bugs
after coding. Obviously, the cost
$1 : — _ — - multiplier increases significantly
Coding IP Verification Integration/Top System Validation / ECO Post--Silicon . o
Verification during the post-silicon stage where
expenses include not only labor, but
also expenses associated with build-
ing hardware, such as silicon, valida-
tion boards, or prototypes.

$10,000,000

$1,000,000

Fig. 2. Cost of finding and fixing a bug at various development stages for a 5 nm ASIC.

The Prescription

Design bugs are introduced throughout all phases of the development lifecycle, including the architectural, design,
synthesis, integration, and physical design phases. To reduce the cost of finding and fixing bugs, methodologies
that promote testing early and often have recently emerged, such as shifting the verification phase to earlier in the
development lifecycle combined with continuous integration.

Today'’s crisis will not be solved solely through improvements in verification methodologies and techniques.
A solution requires a holistic and philosophical change in the design process with a foundation based on bug
prevention. We refer to this fundamental change as design using intent-focused insight, or design+intent.

Siemens Digital Industries Software 3

White paper | Out of the Verification Crisis: Improving RTL Quality

A shift-left development lifecycle that incorporates design+intent does not make verification any less important
than it has been. In fact, the goal of a design+intent process is to improve verification efficiency by decreasing bug
density, which impacts downstream processes, and consequently reduce cost. While a design+intent bug preven-
tion strategy encompasses all aspects of IC design, there are design solutions that exist today with a principal focus
on improving RTL quality, such as static analysis.

Static analysis is a non-simulation-based testing activity in which the RTL code is analyzed for defects ranging from
non-compliance with the specification to those known to be associated with design bugs. Static analysis can also
be used to find incorrect transformations as the design progresses through various implementation phases. Fully
automated static analysis solutions range from lightweight tools, such as lint, to advanced bug-hunting static-anal-
ysis tools that use formal technology. The value in adopting static analysis solutions is a significant improvement
in verification debugging efficiency due to the reduction of bugs during RTL handoff. Static analysis is an easy to
adopt first step of a project’s overall design+intent bug prevention strategy.

The Solution

A design+intent solution is built on
three functional pillars, as shown
in Fig. 3.

@ Protect

Protect intent throughout

@ Produce
The first pillar, labeled Produce,

consists of a process that produces Produce correct intent by
the correct design intent during

construction to minimize bugs. The
second pillar, Prove, ensures that 2se X1
the designer’s intent and require- I | | | | |

Prove intent is met

construction development lifecycle

ments are met early in the develop-
ment lifecycle. And the third pillar,
Protect, ensures that the design
intent is preserved as the design Fig. 3. Three pillars of a design+intent methodology.
progresses through the various

stages of the development lifecycle.

Before we discuss each pillar in the design+intent solution, we should examine the origin and nature of bugs. One
question many engineers ask is if certain RTL languages are more susceptible to bugs than others. The answer is no.
In fact, this has been observed across many software projects for years, where the specific choice of language was
irrelevant in terms of number of bugs. Indeed, this has been quantified across multiple software projects in terms
of number of bugs per 1000 lines of code (LOC). On average, software projects consistently observe between
15-50 bugs per 1K LOC, depending on the complex-
ity of the code. And this software bug density pattern
is also true for hardware projects using RTL.

Another question many engineers ask is if certain
design application domains are more susceptible to
bugs than others. The answer is not necessarily. What
has been observed on projects is that design blocks
that are concurrent in nature, with multiple concur-
rent data streams, contain 5x the number of bugs
versus design blocks that are sequential in nature, as
shown in Fig. 4. For example, in general, a new DMA
controller or a new PCle block will likely experience 1x Bugs 5x Bugs
5x more bugs than a new DSP convolution unit or a
MPEG decoder block. This is due to corner-case bugs

Sequential

Fig. 4. Bug density by design style.

Siemens Digital Industries Software 4

White paper | Out of the Verification Crisis: Improving RTL Quality

often associated with concurrency. The good news is that blocks that are concurrent in nature are generally better
suited for formal techniques.

Now that we understand the nature of bugs, we can explore how a design+intent methodology can help identify
and fix issues when the cost multiplier is small. We begin by exploring various solutions for the Produce pillar, and
the first solution could be to raise the level of design abstraction while leveraging high-level synthesis whenever
possible. Why? By leveraging a higher-level language (HLL), such as C/C++, we reduce the number of lines of code
that are required to describe the design. For example, in many cases, 100 lines of HLL is equivalent to 1000 lines of
RTL. With this reduction in the number of lines of code, we should also expect a 10x reduction in the average num-
ber of bugs. For our example, we would expect 1-5 bugs for the HLL design versus 15-50 bugs for the equivalent
RTL design.

Yet not all design blocks lend themselves to high-level synthesis. Hence, another key part of the Produce pillar is an
HDL design environment that integrates deep analysis capabilities into the creation process. These can quickly
assess new and reused code quality to prevent bugs during development.

The Prove pillar is the core of a design+intent solution. It provides the insight that ensures the designer’s intent is
met. The analysis performed in the Prove pillar falls into two major categories. The first category involves RTL code
syntactic, semantic, stylistic, and structural analyses, which identify coding or methodology errors that are costlier
to find and fix after the code is checked into the regression.

The second category involves sequential analysis, which leverages advanced bug-hunting static-analysis and for-
mal technology. By employing sequential analysis within the Prove pillar, engineers can identify complex corner-
case bugs associated with concurrency, as we previously discussed. A few examples of bugs found using sequential
analysis include combinatorial loops, FSM deadlocks, arithmetic overflow, and indexing issues. The key point is
that by leveraging sequential analysis design solutions these bugs can be found and fixed during the coding stage
without the need to create a simulation testbench.

One critical analysis that must be performed within the Prove pillar identifies a class of bugs associated with clock-
ing and reset metastability issues. Indeed, many engineers fail to understand that metastability bugs cannot be
demonstrated on an RTL model using simulation and are often found at a higher cost multiplier if not prevented
during the design stage. Furthermore, this class of errors is extremely difficult to identify and reproduce in the lab
due to their random occurrence.

Another important analysis performed within the Prove pillar identifies a class of bugs associated with RTL X pes-
simism and X optimism. While X pessimism errors are frustrating and time consuming to identify and fix, X opti-
mism bugs are insidious in that they can mask serious functional errors in the RTL model, particularly errors that
result in simulation differences between the RTL and gate-level models that cannot be found using traditional
equivalence checking tools. Ideally, these errors should be remedied using static analysis before RTL code is
checked into the simulation regression.

Finally, the Protect pillar consists of analysis tools that ensure the intent of the design is retained throughout the
entire development life cycle; for example, identifying new metastability issues potentially introduced during the
synthesis and implementation process.

One recommendation when adopting a design+intent methodology is to automatically build these analyses into a
continuous integration flow, which ensures that the design is protected from faulty changes when moving from
creation to completion. This is easily accomplished since the automatic static analysis tools contained in the vari-
ous pillars generally involve simple-to-no constraints and do not require manual interactions to operate. Indeed, it
is possible to implement a set of light high-value checks as a gatekeeper to any regression check-in. This can be
followed by deeper analyses for daily and weekend regression runs, while the deepest checks can be performed
prior to committing the design to the more intensive prototyping and emulation stages that are often used for
hardware/software co-design and system validation.

Siemens Digital Industries Software 5

White paper | Out of the Verification Crisis: Improving RTL Quality

Summary

Finding a path out of the verification crisis requires a philosophical change throughout the development lifecycle
with a foundation built on bug prevention. To begin this journey, we propose that projects focus on design+intent
solutions, such as static analysis, that promote more consistent development cycles and faster verification conver-
gence by improving RTL quality.

References

[1] Semiconductor Industry Association. International Technology Roadmap for Semiconductors: 1999 edition.
Austin, TX: International Sematech, 1999.

[2] H. Foster, ,Why the design productivity gap never happened” in Proceedings of the International Conference on
Computer-Aided Design (ICCAD), IEEE Press pp. 581-584, San Jose, California, Nov. 2013.

[3] IBS, Global Semiconductor Industry Service Report, Design Activities and Strategies Implications,
July 2020.

[4] H. Foster (2021), 2020 Wilson Research Group Functional Verification Study: IC/ASIC functional verification
trend report [Siemens Digital Industry Software white paper]. Retrieved from here.

[5] H. Foster (2021), 2020 Wilson Research Group Functional Verification Study: FPGA functional verification trend
report [Siemens Digital Industry Software white paper]. Retrieved from here.

[6] W. Edwards Deming, Out of the Crisis, MIT Press, Reissue ed. edition, 2018.

Siemens Digital Industries Software 6

Siemens Digital Industries Software

Headquarters
Granite Park One
5800 Granite Parkway
Suite 600

Plano, TX 75024

USA

+1 972987 3000

Americas

Granite Park One
5800 Granite Parkway
Suite 600

Plano, TX 75024

USA

+1 314 264 8499

Europe

Stephenson House

Sir William Siemens Square
Frimley, Camberley
Surrey, GU16 8QD

+44 (0) 1276 413200

Asia-Pacific

Unit 901-902, 9/F

Tower B, Manulife Financial Centre
223-231 Wai Yip Street, Kwun Tong
Kowloon, Hong Kong

+852 2230 3333

siemens.com/eda

© 2021 Siemens. A list of relevant Siemens trademarks can be found here.

Other trademarks belong to their respective owners.
83787-C3 9/21 TGB

About Siemens Digital Industries Software

Siemens Digital Industries Software is driving transfor-
mation to enable a digital enterprise where engineer-
ing, manufacturing and electronics design meet tomor-
row. Xcelerator, the comprehensive and integrated
portfolio of software and services from Siemens Digital
Industries Software, helps companies of all sizes create
and leverage a comprehensive digital twin that provides
organizations with new insights, opportunities and
levels of automation to drive innovation. For more
information on Siemens Digital Industries Software
products and services, visit siemens.com/software or
follow us on LinkedIn, Twitter, Facebook and Instagram.
Siemens Digital Industries Software — Where today
meets tomorrow.

