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Formal Verification is one of the most misunder-

stood areas of DO-254. It is one of the few actual 

design or verification methods named in the RTCA/

DO-254 document (Appendix B) and is in fact listed 

as an appropriate method for the “Advanced 

Verification” requirements for Level A/B designs. 	

The problem is that the content of Appendix B is 

extremely difficult to understand. The text in this 

section was largely taken from texts or papers on 

formal methods intended more for the academic 

rather than today’s typical user. In addition, it is 	

also too oriented towards formal verification for 

software. Add to this, the information is over 20 

years old. This has resulted in fear (in the minds of 

the project team who wants to use it on their 

DO-254 programs but don’t want to increase their 

project’s scrutiny) and unease (for the certification 

authority who sees its use called out on a DO-254 

program but does not really understand this use or 

its purpose).

This paper seeks to take the mystery out of the use 

of formal methods for hardware verification. In this 

discussion, we will first explain formal methods as 

clearly and concisely as possible. We will then look 

at the state of the industry and the changes over 

the last decade or so that have enabled the wide-

spread use of formal methods for hardware verifica-

tion. With this knowledge in-hand, we will examine 

and explain the contents of DO-254 Appendix B 

3.3.3 “Formal Methods.” Finally, we will bring this 

information together and provide recommendations 

for using formal methods on a DO- 254 project.

Introduction

Formal methods overview 

Even though the practical application of formal 

methods was in its infancy during 	 the original 

writing of DO-254, the authors of DO-254 certainly 

understood the potential of formal methods in 

terms of enhancing design assurance. This section 

provides some foundational information that can 

help you understand why the DO-254 authors felt 

formal methods were pertinent and useful in terms 

of aiding design assurance.

What are “Formal Methods”?
Formal methods make use of exhaustive mathemat-

ical algorithms to verify the functional correctness 	

of a design against its requirements. Because the 

process is exhaustive, the verification answer to the 

question “does this design meet this requirement” 	

is guaranteed to be complete. That is, if design can 

exhibit any undesirable behavior, formal methods 

will point them out. On the other hand, if formal can 

prove that no such undesirable behavior exists, then 

formal methods will say so.
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Contrast this with commonly used simulation 	

techniques, which is considered a “probabilistic” 

approach. This means the tool itself cannot guar-

antee that all undesirable behavior will be identified. 

It’s entirely up to the user to think of all possible 

undesirable behavior and test each one individually.

This is best explained with an analogy to doing  

a math problem. Consider solving the equation  

2X² – 8X + 5 = 0 for X. You can brute force and 

estimate an answer by trying various combinations 

of X and narrowing down the possibilities. This is 

similar to how you’d write tests using a directed test 

simulation approach. Your attempts might look 

something like this. (X is the input, Y is the output. 

According to the above equation, we want Y to 

equal zero, so our challenge is to find the correct 

value of X).

From your test results, you can see that Y is 0 when 

X is somewhere between 0 and 1, and again some-

where between 3 and 4. (Note if you stopped testing 

after X=1, you also may have thought there was only 

one answer!). If you’re happy with that estimation, 

that is fine. But if you want to find the exact answer, 

you’d simply plug the numbers into your calculator 

and use the quadric formula to solve exactly:

A high-end calculator would provide both a graph of 

the function and exact values for X (X = 0.775 and X 

= 3.225). When the calculator comes back with the 

solution, you know that it is accurate and complete.

This is how formal methods work. Formal methods 

use mathematical principles in this very same way 

to provide a complete and repeatable answer. The 

question formal methods answers is whether a 

design model implements its intended function.

Formal methods value for DO-254
Today, many companies are using formal methods 

as they understand how it uniquely offers value 	

due to its ability to improve design quality. It is a 

technique unlike any other in that it can perform 

some very essential roles for safety-critical and 

mission-critical designs. For example, it is possible 

with formal methods to exhaustively verify safe-

ty-critical properties. Likewise, with formal methods 

you can explicitly check for situations that you want 

to ensure never happen. You can also easily find 

unintended and unanticipated design behaviors 

with formal methods. This can best be shown 

through an example.

Consider the design of an FPGA that controls the 

reverse thrusters of an aircraft. A safety- consider-

ation of this design would be to ensure that the 

reverse thrusters NEVER fire when the aircraft is 

airborne. This would likely result in a catastrophic 

failure of the system.

To ensure this detrimental situation could never 

happen, you would want to exhaustively verify the 

design to prove that there are absolutely no 

scenarios where this could happen. With formal 

methods, you would check the design to ensure that 
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the property “the reverse thrusters can never fire 

while in mid-air” always held true. Formal methods 

would tell you all the scenarios that violate that 

property. This is the true power of formal methods.

With simulation you can verify expected behavior 

given defined circumstances, but you can never 

fully verify unexpected conditions. Yet simulation 

has been the perfectly acceptable approach to 

verification. By augmenting traditional simulation 

approaches with formal methods, confidence that 

the design performs its intended function (a.k.a., 

design assurance) improves.

Inputs to formal
Achieving design assurance as demonstrated above 

using formal methods is much easier than most 

people realize. All it takes is a formal engine (that 

runs mathematical analysis), the design model, and 

the requirement. The design model itself is just the 

standard RTL model (typically VHDL) that is devel-

oped during the “detailed design” phase, simulated, 

and then synthesized. This model requires no addi-

tional work to be used with formal methods.

The requirement would normally be stated in 

English (or the natural language used in the project) 

where it is captured and traced throughout the 

process. In order to use this requirement with 

formal methods, the requirement would need to be 

written in a formal property specification language. 

(You can think of a property as the same thing as  

a requirements).

Today there are several industry standard property 

languages, which are commonplace and well-under-

stood. Once this formal property description is 

written, it should be reviewed against the original 

requirement for accuracy. (In fact, this provides 

another layer of design assurance in the flow, as 

translating a requirement to a formal language is a 

very good exercise in requirements validation, as 

the translated property must be unambiguous and 

verifiable. Going through this process is an excellent 

double-check on the validity of the requirement).

Once you have your RTL coded and your require-

ment written as a formal property, you can run 

formal. This is really all it takes to exhaustively verify 

a safety-critical property. Every violation of the 

property identifies unexpected behavior of the 

design that must be fixed.

Why the confusion and why don’t more people 
use formal methods?
Many people are very intimidated by the thought of 

formal methods. They may have learned a little bit 

about it in their college days in a very academic 

sense only. At the same time, they’ve been using 

simulation for many years. How to run simulation is 

well understood.

However, if you stepped back and really examined 

how a simulator works alongside how a formal 

methods engine works, formal methods actually are 

simpler in concept.

However, formal methods often suffer from a legacy 

stigma as being a method only suitable for those 

who have a Ph.D., or at least a propensity for math. 

While this may have been true 20+ years ago, before 

commercial tools, RTL coding standards, and prop-

erty specification languages, today it is simply an 

artifact of a time gone by. The creation of intuitive 

user apps leveraging sophisticated formal engines 

has drastically lowered the barrier of entry to use 

formal methods.

How formal methods find bugs
It’s perhaps natural that some misconceptions about 

formal methods remain. After all, the very idea that 

a commercially available tool can readily take a RTL 

design and a simple-to- specify property and 

exhaustively verify its functional correctness sounds 

impossible. Simply put: It sounds too good to be 

true. As a result, many people are skeptical that it 

really does exist. With that in mind, let’s try to 

explore how a formal tool can find bugs in a design.
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First, think of a design as a collection of registers 

and input pins. For standard digital designs, when 

you change the input stimulus and apply a single 

clock, the state of the design will change. That is, 

the design will change its behavior and do some-

thing different. Change the inputs, give another 

clock, and the design state will change again. As 

long as the design keeps doing things that are 

expected and meeting its requirements, it’s oper-

ating within its “legal state space.”

On the other hand, if the design ever does some-

thing illegal that violates its requirements, we can 

say the design has moved into “illegal state space,” 

and the design has a bug.

Simulation works fairly intuitively. It walks through 

the design’s behavior changing input signals, giving 

a clock, changing input signals, giving a clock, etc. 

Repeat this process until the simulation test reaches 

its end, where some output value is typically 

compared against an expected value. If the output 

value matches its expected value, the test is said to 

“PASS.” If not, then the test “FAILED.” It makes perfect 

sense. One can even perform this task manually by 

tediously propagating values through the design to 

determine what the design will do next.

The key problem to this approach is obvious to 

anyone that has functionally verified a design of any 

complexity. If the collection of simulation tests fails 

to exercise some portion of the design, then a bug 

may exist that was previously unknown. In some 

cases, this could be an unexpected combination of 

conditions that is difficult to predict.

Formal verification does things a bit differently. Formal 

flips the entire problem on its head. By using a property 

to directly define legal vs. illegal state behavior, formal 

asks the question: “Is there any possible way to get from 

a legal state to an illegal state.”

To perform this analysis, formal starts with a single 

state, which is typically the “reset state” (the state 

reached after the reset signal is applied). Formal 

then thinks about all the possible behavior, all the 

combinations and permutations of 1s and 0s across 

all input signals. It calculates how the design will 

behave as a result of each and every one of these 

inputs and remembers the result. Then for each one 

of these results, formal again considers each and 

every possible input combination and permutation, 

and how the design will respond, again remem-

bering all results.
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At each result, formal asks itself, “is this result illegal 

with respect to the specified property?” If so, then 

the tool has found a way that the design doesn’t 

meet its requirement, and it is reported to the user. 

If not, the procedure continues. Eventually, formal 

will realize that it has examined all possible results, 

indicating there is no illegal behavior possible, and a 

“proof” of correctness results.

For the example requirement below, the property 

simply states that “if we currently see activate_rev_

thrusters, then it implies that we must already have 

weight_on-wheels.” If not, then we’ve reached an 

“illegal state space.” This is using the IEEE industry 

standard SystemVerilog Assertion language.

As you can imagine, the number of results the tool 

needs to compute and remember grows exponen-

tially. It’s only in the past 10 years that very clever 

formal algorithms, combined with very fast 

computers, have allowed formal methods to be 

applied in practical ways.

Hopefully this has somewhat de-mystified the 

formal methods process. With this basic 

understanding in mind, we can now move on to 

explore the DO-254 spec related to this topic.
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This section examines the actual text of Appendix B, 

3.3.3, looking at exactly what is written, in the order 

it is written, and explaining it one small piece at a 

time. Information that is pulled directly from DO-254 

is highlighted in blue text for clarity.

Formal methods definition 
The text of DO-254 says:

3.3.3 Formal Methods

The term formal methods refers to the use of  

techniques from logic and discrete mathematics  

in the specification, design and construction of 

computer systems.

Note: The material in this section is derived from 

“Formal Methods Specification and Analysis 

Guidebook for the Verification of Software and 

Computer Systems, Volume II: A Practitioner’s 

Companion,” May 1997, NASA-GB- 001-97. A more 

detailed presentation of the application of formal 

methods, illustrated with a worked example, can  

be found there.

As previously mentioned, formal methods are math-

ematical methods. They use the proven principles of 

mathematics as the foundation of their analysis.

Also look at this note. This basically says that the 

information in this appendix is taken from a publica-

tion from 1997 that focuses on software and computer 

systems. Later in this paper we will talk about the 

changes that have occurred since the mid-90s and the 

status of usage today. Later in the paper, we will also 

clarify the differences between formal verification of 

software and hardware, because they can be signifi-

cant in terms of practical application.

Two types of formal
Applications of formal methods fall into two broad 

categories, descriptive and deductive. Descriptive 

methods employ formal specification languages, 

which provide for clear, unambiguous descriptions 

of requirements and other design artifacts. 

Deductive methods rely on a discipline that requires 

the explicit enumeration of all assumptions and 

reasoning steps. In addition, each reasoning step 

must be an instance of a small number of allowed 

rules of inference. The most rigorous formal 

methods apply these techniques to substantiate the 

reasoning used to justify the requirements, or other 

aspects of the design or implementation of a 

complex or critical system.

DO-254 Appendix B 3.3.3 
Formal methods explained

SIEMENS DIGITAL INDUSTRIES SOFTWARE   8

White Paper – Understanding formal methods for use in DO-254 Programs



Value of formal
The purpose of formal methods is to reduce reliance 

on human intuition and judgment in evaluating 

arguments. That is, deductive formal methods 

reduce the acceptability of an argument to a calcu-

lation that can, in principle, be checked by a tool, 

thereby replacing the inherent subjectivity of the 

review process with a repeatable exercise.

This text clarifies the value of formal, and why it is 

important. Formal methods provide a mechanism 

for automating analysis that is simply too difficult to 

do manually because it would depend too much on 

a person’s intuition and judgment – which can 

certainly vary from person to person, yielding 

perhaps different and incomplete results. Formal is 

consistent, complete, and repeatable.

As an analogy, using formal to verify a hardware 

design is not much different than using a calculator 

to solve a math problem. Both utilize the principles 

of math, automate a difficult problem, and even if 

the underlying technology is not well understood by 

the masses, this doesn’t stop the tool from providing 

significant value. Hence, you do not need to be a 

math expert to apply formal methods.

Formal approaches for design assurance
The next part of the Appendix B text begins to discuss 

how Formal plays a role in improving design assurance.

There are several areas where application of formal 

methods provides additional assurance in the design 

process. Although formal methods are applicable 

throughout the design process, increases in design 

assurance may be obtained by targeted application. 

The following list highlights some of the 

possibilities:

1.	 Early stages of design

2.	 Entire design, specific components, and  

other uses

3.	 All functions, important properties,  

unintended behavior

Early stages of design
Formal methods may be applied at different stages 

of the development life cycle. Generally, applications 

of formal methods are most effective at the early 

stages of the life cycle, specifically during require-

ments capture and high-level design.

This is referring to the use of formal at the earliest 

stages of design, such as requirements capture and 

conceptual design.

System architects often use formal methods as they 

are evaluating early system models and possible 

architectures. Since DO-254 is currently scoped 

(through AC20-152) to the component (PLD, FPGA, 

ASIC) level, this is an interesting fact, but not neces-

sarily something you will see done at the conceptual 

design of the component—the system perhaps—but 

not the component.

On the requirements side however, formal can play a 

vital role, even if scoped to the component level. We 

will see in a moment how formal is linked tightly to 

requirements, and why this is such an important 

aspect of the value provided by formal. But for now, 

suffice it to say that in translating requirements to 	

a formal language, this can lead to bugs or issues in 

the requirements being found very early in the 

design process – during requirements capture and 

validation-- where they pose minimal cost and 

schedule risk.

Entire design, specific components, 		
and other uses
Formal methods may be applied to the entire design 

or they may be targeted to specific components. 	

The FFPA is used to determine which FFPs to 	

analyze with formal methods. Protocols dealing with 

complex concurrent communication and hardware 

implementing fault-tolerant functions may be effec-

tively analyzed with formal methods.
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Formal methods may be applied to the entire design 

or they may be targeted to specific components. 	

The FFPA is used to determine which FFPs to analyze 

with formal methods. Protocols dealing with 

complex concurrent communication and hardware 

implementing fault-tolerant functions may be 

effectively analyzed with formal methods.

In theory, formal can be applied to the entire 

design. However, a reality of design complexity and 

tool capacity is that unless the design is fairly small, 

applying formal to the whole design is not generally 

practical. Today, it is far more common to see formal 

applied to specific components, or rather, blocks of 

the design. Here the problem space is much more 

conducive to an exhaustive verification approach.

Another interesting approach to using formal would 

be to provide added assurance (verification) to the 

safety-specific aspects of the design, such as the 

functional failure paths and safety-critical functions.

Another sweet spot for formal use today is in veri-

fying very complex hardware, especially with 

concurrent functions. Likewise, formal could be 

used to validate the correct operation of fault-tol-

erant functions, ensuring it is indeed completely 

resistant to fault conditions.

All functions, important properties, unin-
tended behavior
Formal methods may be applied to verify system 

functionality, or they may be used to establish 

specific properties. Although formal methods have 

traditionally been associated with “proof-of-correct-

ness,” that is, ensuring that a component meets its 

functional specification, they can also be applied to 

only the most important properties. Often, it is 

more important to confirm that a design does not 

exhibit certain undesirable properties, rather than 

to prove that it has full functionality.

This indicates that formal can be used to verify all 

system functions or just some of them, perhaps 	

only the most important. Again, this goes back to 

scoping how formal is being used. Will it be used 	

for all properties, to exhaustively verify the entire 

design? This is possible, but as mentioned before, 

it’s generally not a practical approach. More likely, 

formal will be used to verify a select set of proper-

ties, usually those of most concern.

During the course of verifying properties, formal 

also provides a unique side benefit – it finds unin-

tended behavior. This is something very difficult to 

achieve with a simulation-only approach. This is 

where “reliance on human intuition and judgment” 

is not good practice. Instead, using an exhaustive 

mathematical analysis can provide tremendous 

value in safety- critical designs. We will talk more 

about how this is done in future sections.

Formal tools and tool assessment
Practical application of formal methods typically 

requires tool support. Tools used should be assessed 

and, if necessary, qualified as described in Section 

11.4.

This should come as no surprise to anyone. You 

need tools to run formal analysis. These tools should 

not be treated any differently than any other verifi-

cation tools used in the design flow.

It is not uncommon to hear the objection “How can 

we trust the results, if we don’t understand how the 

tool works?” But think about it. How many people 

really understand how simulator algorithms work, 

or the circuitry within a calculator for that matter? 

Very intelligent people, who do understand how 

these things work, have engineered these products 

for the benefit of the masses.

Now, this does not mean they should simply be 

trusted. There should be no “trust” in a DO- 254 

program. No two tools, just like no two people, 	

are alike. That is why all work must be reviewed, 

double-checked, or proven worthy of the task.
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Two main approaches can be used for assessing 

formal tools.

1) Independent output assessment
As we will see in a bit, simulation and formal 

methods are complimentary. They are generally 

used together in a flow. In many ways, they 

approach the verification problem very differently 

and, in this regard, provide different ways of looking 

at the verification problem. Verification flows that 

use both typically have some amount of overlap and 

double-checking. This double-checking can also be 

explicitly done if there are concerns about the tool 

outputs.

In addition, throughout a DO-254, each stage 	

of design requires additional verification. Formal 

methods are usually done early in the design 

process. Numerous other verification methods and 

techniques will also be run later in the process, on 

models of lower abstraction levels, on the HW item 

itself, and with the HW item in the target system. 

Each of these additional verification methods and 

processes should be verifying previous verification 

work. A good DO-254 flow will automatically have 

these checks and balances (that support indepen-

dent output assessment) built in. This is the best 

approach.

2) Qualification kits
It would also be possible to provide a set of test 

cases that could ship with the tool. These test cases 

could run in both simulation and formal to explicitly 

force both types of tools to verify the cases. The 

results of both should match.

While this is certainly just a tiny fraction of the sort 

of testing that is done on these tools by their devel-

opers, and therefore the value of this sort of process 

is highly questionable, if certification authorities 

required it, it could be done. Tool vendors or the 

hardware applicant could come up with such a test 

suite.

Requirements, properties, and assertions
3.3.3.1 The Methodology of Formal Methods

The application of formal methods begins by 

expressing the requirements using a formal 

language. The requirement specification serves an 

important descriptive function. It provides a basis 

for documenting, communicating, and prototyping 

the behavior and properties of a system using an 

unambiguous notation.

Finally, we are able to tie formal methods to a 

requirements-based design process. We start by 

defining some terms to so we can see how formal 

methods works and how it can truly be a require-

ments-based verification approach.

A requirement is a description of design intent/

behavior. The customer, architect, or designer (all 

the people who may have a hand in writing require-

ments) usually writes requirements in their native 

language (such as English). The problem with this is 

that native languages like English are very ambig-

uous, and prone to various interpretations. Even 

though requirements are reviewed and validated, 

oftentimes, bugs later in the process tie back to 

misinterpretation or misunderstandings of the 

actual intent of a requirement.

With formal methods, an engineer must translate 

the native language requirement into a formal 

language description of this requirement. The 

formal description of a requirement is called a 

property. A property specifies a requirement unam-

biguously in a formal language that enables tool 

use. Because the formal language is unambiguous, 

the tool can interpret the property only one way.

One of the major barriers to adoption of formal 

methods prior to the year 2000, was the lack of 

standardization of these formal languages. Today, 

the industry has adopted two languages for the 

specification of properties: PSL (Property 

Specification Language, IEEE 1850) and SVA 

(SystemVerilog Assertions, IEEE 1800). As IEEE 

standards, this ensures that a whole industry 
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infrastructure exists for their support (documenta-

tion, libraries, tools, training, etc.).

The property is merely a mechanism to formally 

capture design intent. In order to tell a tool that you 

want to do something with a property, such as 

monitor it during simulation, and check it with 

formal verification, you must assert it. Thus, an 

assertion is a tool directive to “turn on” a property 

for verification.

An example can make this more concrete. Suppose 

you have the following design requirement from our 

earlier example.

An example can make this more concrete. Suppose 

you have the following design requirement from our 

earlier example.

“The reverse thrusters shall never deploy in flight.”

This can be formally described as a property (in this 

case, using SVA) as follows:

property REVERSE_THRUSTERS_001;		

@(posedge clk)

activate_rev_thrusters |-> 

weight_on_wheels_notification;

endproperty

This description will passively sit in the code (i.e., 

the design code or a separate verification file) doing 

nothing until you decide to use it in verification. You 

do this through an assertion as follows:

property REVERSE_THRUSTERS_001;  

@(posedge clk)

activate_rev_thrusters |-> 

weight_on_wheels_notification;

endproperty

assert property REVERSE_THRUSTERS_001;

The “assert” keyword triggers the simulator to 

monitor the property during simulation. Likewise, 

all asserted properties are checked when formal 

runs.

Formal model and analysis
In addition, the requirements specification serves as 

a basis for calculating or formally predicting system 

behavior. A formal model of the component to be 

analyzed is constructed using a formal language. 

The model is analyzed with respect to the formal 

statement of requirements using the rules of the 

selected formal logic. The characteristics of the 

model are determined by the style of formal analysis 

to be performed.

As we have just demonstrated, requirements 

become a key aspect of formal analysis when they 

are written as properties and asserted. Next you 

need a formal model.

This is another key area of misunderstanding with 

regards to formal use in hardware. You do not need 

a separate model to be used for formal analysis. The 

formal model is simply the RTL model, which in the 

military/aerospace industry is typically VHDL code 

(or Verilog, SystemVerilog, mixed languages).

How or why can the RTL be used as the formal 

model? Consider this. To simulate the model, you 

have to compile the VHDL code into a set of primi-

tives or C code that is executed by the simulator. 

This is the same with synthesis – the RTL model is 

compiled into a gate-level model. Similarly, with 

Formal, the RTL model is compiled into a mathemat-

ical model. They all start from the same RTL model 

and translate it to the internal model appropriate to 

fulfill their task.

The formal analysis process compares the model 

(e.g., the VHDL) to the requirement (via the asser-

tion), calculating whether the requirement is true 

within the model.
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The level of detail in the component model is deter-

mined by the goal of the chosen formal analysis 

technique. Some approaches are tailored to finding 

design errors that may have eluded testing, while 

other approaches seek to guarantee the absence of 

certain classes of design errors.

For use in DO-254 projects, the formal model is the 

RTL model (e.g., the VHDL code). A number of 

formal techniques can be used on this model, 

including searching for bugs (i.e., bug hunting) 

versus trying to exhaustively prove no bugs exist 

(i.e., assurance). Both find bugs, but the goals are 

different. The first approach attempts to quickly 

identify bugs in a non-systematic fashion using 

formal techniques. The second approach is a 

comprehensive and systematic methodology to 

achieving assurance, at a potential cost of more 

effort and time.

(Formal) model checking
1.	Error-Detection. The most common formal tech-

nique for error detection is called model checking. 

Here the requirements are expressed as formula	

 in a decidable temporal logic. The model of the 

component is an abstract state machine designed 

so that the property to be tested is preserved. 	

The proof procedure is automatic. A failed proof 

attempt indicates a design error in the modeled 

component. The result of failed proof is a 

sequence of input stimuli that demonstrate 	

specifically how the component does not satisfy 

the stated requirement.	

Formal model checking, or simply model checking, 

is the formal analysis process we just introduced. 	

In this common use of formal methods, a formal 

analysis tool checks a design model against its 

requirements. The output of model checking 

includes proofs or failed proofs. We will talk about 

this more in section “Outcomes of Formal Model 

Checking.”

Model checking compliments simulation
Something that is important to understand about 

model checking is that it should generally not take 

the place of simulation, but rather be used along-

side of it.

In the early days of commercial formal tools, compa-

nies that sold these tools believed so strongly in 

their verification abilities that they often promoted 

these solutions as the replacement for simulation. 

However, as the use of formal has become more 

common place, it has also become more and more 

apparent that both simulation and formal analysis 

are necessary to ensure a design is thoroughly 

verified. Thus, the vast majority of companies who 

use formal today do so in a manner that is comple-

mentary with simulation. This is because both 

simulation and formal analysis have their sweet 

spots, and pitfalls.

Simulation allows you to create and verify just about 

any type of circuitry or situation that you are 

creative enough to think of. It operates with a 

model of the design environment (called the test-

bench) sending stimulus (or test cases) to the model 

of the design (called the device under test, or DUT), 

and checking the model’s response. The simulation 

test environment is typically developed by one or 

more verification specialists. Simulation is very 

flexible, but the tests are only as good as the skill of 

the verification team creating them.

Simulation is rarely, if ever, exhaustive (except for 

the most simplistic of circuitry). For today’s large 

designs, simulation might demonstrate the pres-

ence of a bug, but unlike formal, it can never prove 

the absence of a bug.
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Formal model checking does not require a testbench 

or any input stimulus. The test cases are simply the 

assertions that are written from the requirements. 

This enables testing to start much earlier in the 

process because far less infrastructure is needed. 

Often (but not always) this early testing is done by 

the designer himself. In this regard, the designer is 

checking his code (part of the model) a bit at a time, 

against the pertinent requirements. The assertions 

can be reused for official verification work done 

independently by verification team. These asser-

tions can also be used during the simulation activi-

ties that are done by this team (note that this is a 

very common practice, but somewhat beyond the 

scope of this specific paper). The drawback with 

formal is that it is a highly intensive computational 

process that consumes huge amount of memory 

and computing power. For this reason, it is best 

used at the block level of design, is best suited for 

certain types of circuitry (this is elaborated in 

“Where to Use and Not Use Formal”) and may 

benefit from requirements being broken down into 

multiple, smaller assertions. If scoped and used 

appropriately, formal provides exhaustive analysis. 

Formal also runs much more quickly than 

simulation.

The following table summarizes the use of simula-

tion and formal methods (including how they are 

different, and how they complement each other) 	

for verification:

Issue Simulation Formal
Model (DUT) RTL (e.g., VHDL) RTL (e.g., VHDL)

Testbench Required None

Test cases Usually hand created Automatic (via assertions)

Types of Circuitry Supported Just about all Some better than others

Design Level Block or Top Level Block Better

Exhaustive No Yes

Linked to Requirements Depends on testcases
Yes, requirements-based 
assertions

Support Assertions Yes Yes, required

Used for Early Verification
Prohibitive (infrastructure 
needed)

Well suited

Theorem proving
2.	Error Preclusion. Formal methods targeted to 

prevention of errors are generally based upon	

 an expressive specification language with a 

supporting proof theory. With the increased 

expressiveness, more complicated requirements 

may be stated, and more detailed models of the 

component may be constructed. However, the 

proof procedure may only be partially automated. 

An appropriate level of detail for the component 

model may be a synthesizable HDL description. In 

some cases, the same model may be used both for 

simulation and formal analysis. A completed proof 

is evidence that the component is logically correct 

with respect to the stated requirements for the 

analyzed input space.

This section of DO-254 is admittedly quite 

confusing. It is talking about a formal methods 

technique called Theorem Proving. While theorem 

proving is not uncommon for academics and Ph.D. 

types who focus on systems analysis and architec-

tures (in fact “error preclusion” means trying to find 

bugs in the architecture upfront, prior to RTL devel-

opment), it is unlikely to be used today on compo-

nent level development in DO-254 compliant 

programs. Therefore, at this time, for the current 

scope of DO-254, this text is something that is not 

relevant.
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Outcomes of formal model checking
3.3.3.2	 Formal Methods Resolution

There are three possible outcomes of a deductive 

formal analysis:

1.	If the proof attempt is successful, the verification 

activity is complete. The level of design assurance 

depends upon the fidelity of the models 

employed. For example, if the model of the 	

hardware item corresponds to a detailed design, 

the proof provides assurance of functional correct-

ness equivalent to that of exhaustive testing.

2.	In some cases, a failed proof results in an explicit 

counter-example; that is, it identifies a test 

scenario to illustrate specifically how the design 

does not meet the stated requirements. This may 

indicate either a deficiency in the design or a 

deficiency in the requirements. Such deficiencies 

may be resolved by correcting the design, revising 

the requirements, shown to not be a physically 

realizable condition or using another method. All 

counter-examples should be identified so that 

they can be resolved. Changes to the design or 

requirements need to be reflected back to the 

appropriate process.

a.	 After a design or requirement has been modified 

to address a deficiency identified by a failed 

proof attempt, the proof should be attempted 

again to confirm that the modification has 

successfully addressed the identified problems. 

This cycle is repeated until a successful proof is 

achieved.

b.	 In cases where a counter-example is considered 

resolved without requirement or design changes 

but the tool identifies only one counter- 

example, that is, the resolved counter-example, 

the process should be modified so that it can 

identify all other counter-examples.

3.	The most difficult case to resolve is when a proof 

cannot be produced and a counterexample cannot 

be identified. One possible option is to revise the 

design in order to simplify the verification effort. 

Alternatively, the verification activity may be 

decomposed with a clear delineation between the 

cases addressed by proof and those cases where 

the requirement needs to be addressed by some 

other means. Changes to the design and derived 

requirements should be reflected back to the 

FFPA.

This is a lot of text to say something rather simple. 

Basically, model checking produces one of three 

outputs as follows:

•	 Proof						    

A proof provides evidence that exhaustive analysis 

reveals that a model will always operate according 

to the requirement (no exceptions).

•	 Counter-example				  

An exception is found. Each counter-example 

provides a waveform (that can be used in 		

simulation) that demonstrates a condition 	

where a model violates a property.		

Usually a counter-example indicates unintended 

behavior of the design.

•	 Inconclusive					   

This situation indicates that given the current 

conditions, a tool is unable to come up with one 

of the previous options. Thus, more verification 

work must be done. This typically involves 

breaking down the problem to something simpler, 

either by scoping the amount of circuitry being 

analyzed or breaking the requirement down into 

multiple smaller requirements.

If you would like a better understanding of how 

model checking works, and the algorithms 

employed to come up these results, numerous 

papers and publications are available that describe 

this. For example, Siemens EDA has lots of content 

and webinars related to formal verification at: 

https://eda.sw.siemens.com/en-US/ic/questa/

formal-verification/ .
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Formal methods data
3.3.3.3 Formal Methods Data The data developed 

during the application of formal methods includes:

1.	Description of the specific formal methods 

approach to be used and the components or FFPs 

to which formal methods will be applied.

2.	Formal statement of requirements.

3.	Formal models of the component.

4.	Proof, or sufficiently detailed script to generate 

proof, relating the models of the component to 

the formal statement of requirements and 

including correlation in the traceability data.

5.	Identification of tools employed and tool assess-

ment results.

6.	Identification of the verification test cases and 

requirements added or modified as a result of the 

analysis.

7.	Statement of the level of the verification 

completeness achieved for the FFPs addressed by 

analysis. Include a list of the analysis discrepan-

cies not resolved by modification to verification 

test cases or requirements and their rationale for 

acceptability of the discrepancies.

This text tries to clarify the types of data that must 

be created and reviewed if formal methods are to be 

used in a DO-254 project.

Formal Data Checklist
The following list explains this in more detail. You 

can use this list a checklist for the data that should 

be used and review when formal methods are used 

on a DO-254 program.

1.	Description of the formal methods approach	

The section entitled “Formal Use Models” 

describes some of the ways that people are using 

formal methods today. In terms of the DO-254 

project, the Verification and Validation Plan docu-

ment should capture a description of how specifi-

cally formal is being used on the project. It should 

cover who is using formal methods, at what stage 

of design, on which blocks/circuitry/properties 

and for what purpose.

2.	Formal statement of requirements 		

(i.e., properties)				  

The formal descriptions of requirements are the 

design properties, written in an industry standard 

property language, such as the IEEE-1850 PSL or 

the IEEE-1800 SVA. The property should be thor-

oughly reviewed (alongside the requirement), 

documented and linked to its corresponding 

requirement. Note that in some cases, a require-

ment may have more than one corresponding 

property.

3.	Formal model					   

The formal model is just the VHDL (or Verilog, or 

SystemVerilog) design code. No modifications are 

necessary. This model is already part of the design 

flow and should not be treated any differently as 

it would be for simulation or other verification 

activities.

4.	Proofs, results, traceability 			 

Proofs, along with the repeatable scripts/methods 

that generate the proofs, should be captured in 

documentation, reviewed, and perhaps even 

demonstrated during reviews or audits. The 

proofs are considered the verification results and 

thus complete the traceability loop from require-

ment to property to process (script) to results 

(proof).

5.	Tools and assessment				  

Just as any other design or verification process, 

the tools and assessment methods must be docu-

mented in the PHAC or V&V Plan. Since formal 

methods will typically be used alongside simula-

tion, and in fact the formal methods tool produces 

test cases (in the form of counter-examples for 

simulation) for simulation, a typical approach may 

be independent output assessment via simulation.
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6.	Counter-examples, new tests, new properties	

Achieving a full proof may not occur on the first 

try. For example, when the formal tool discovers 

design behavior that violates a property, the tool 

produces a counter- example (i.e., a waveform) 

that demonstrates the unintended behavior. This 

counter- example can and should be run in simu-

lation, and in fact can be added to the simulation 

test suite as a new test for regressions. These 

sorts of new tests should be documented and 

treated the same as other simulation tests (i.e., 

reviewed, traced, etc.). At other times, a property 

may be too difficult to verify as it stands (e.g., the 

tool may run out of memory trying). In these 

situations, the property may need to be broken 

down into multiple properties, or similarly, a 

property may need to be run first within smaller 

portions of the design. When these situations 

occur, they should be documented and reviewed.

7.	Formal methods results				  

The V&V Plan stated the intent of formal methods, 

including the use model and goals. Perhaps the 

intent was to exhaustively verify a handful of 

safety-critical properties. When formal methods 

analysis is complete, the results (in this case, 

formal proofs) should be reviewed against the 

goal to ensure the goals were met. In this 

example, if a proof was achieved for each safe-

ty-critical property, then the goal was met. If not, 

most likely steps were taken as described in step 

6, which should all be documented. If a targeted 

property (or block or structure) has not been 

thoroughly verified via formal methods as per the 

plan, justification should be made as to why it is 

not necessary, or which alternative verification 

methods will be employed to ensure an appro-

priate level of testing.

Summary of Appendix B,			 
3.3.3 Formal Methods
Formal methods is a mathematical analysis 

approach. Model checking (a common type of 

deductive formal analysis) automatically verifies a 

design model against requirements. Model checking 

can improve design assurance by exhaustively 

verifying circuitry and finding unintentional 

behavior. Note that model checking is compli-

mentary to simulation.

The following figure provides a visual summary of 

the model checking process:
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Today’s use of formal

This section examines the state of the industry 

today, including the evolution of formal methods for 

hardware over the last 20+ years, who is using it 

today, how are they using it, and why.

A bit of tool history
The development of commercial formal methods 

tools for hardware began in the late 1990’s. Prior to 

this, the only tools available for formal model 

checking were developed in academia and never 

commercialized due to numerous impracticalities 

and inadequacies (such as user interfaces, integra-

tion with existing flows, standards, use models, 

marketing and support).

One of the first companies to focus on developing 

commercial formal model checking tools was 0-In 

(acquired by Mentor Graphics and now part of 

Siemens EDA). By early 2000, 0-In had launched 

several commercial model checking products, and 

since that time numerous products and apps have 

been produced along with quantum leaps in solver 

technology capabilities. Around this same time, 

several other companies (Cadence, Synopsys, 

Averant, Real Intent, OneSpin) followed suit. Since 

then, the market has grown from virtually nothing 

to around $300M.

Industry data
The Wilson Group Survey is done every two years 

and reveals significant growth in formal. The 2020 

analysis of the ASIC and FPGA markets reported 

significant growth for both property checking and 

formal apps. For the ASIC markets, property 

checking has a four year CAGR of over 8%, and the 

formal apps over this same period has a 19% CAGR. 

The FPGA market for property checking has a four 

year CAGR of 5% for property checking and a four 

year CAGR of 12% for the formal apps. This indicates 

that people are using formal methods today, often 

as plan of record, and usage is on the rise.

As a commercial vendor of formal analysis tools, 

Siemens EDA has witnessed these same trends. 

Today we have a large number of formal model 

checking tool customers, many of whom are 

currently using these tools on DO-254 programs.

Why people are using formal
Regardless of the particular use model or method-

ology, by far the number one reason people use 

formal is for improved quality. Improved quality 

means more assurance that the design operates as 

it should. Thus, formal is primarily used today to 

improve design assurance, which is the driving force 

behind DO-254 compliance.

Another benefit of formal is that it’s much easier to 

tie formal verification activities to design require-

ments – after all, that is what model checking does. 

It checks a model against requirements for that 

model. With simulation this is harder. You can 

certainly write tests that map to requirements, but 

it’s much more difficult to ensure you have thor-

oughly tested a requirement with simulation. With 

formal, you exhaustively test a requirement, or you 

find situations where the requirement is violated. 

These examples of violations demonstrate unin-

tended behaviors of the design, which is again 

difficult to find with simulation. Certainly, you 

might get lucky and find these things with simula-

tion, but formal provides conclusive, exhaustive 

evidence of these behaviors (and waveforms 

demonstrating the behavior that you can double-

check in simulation).

People are using formal more and more these days 

because the majority of barriers have been broken 

down. Previously, no standard assertion languages 

existed. Today we have IEEE- 1850 (PSL) standard 

and the IEEE-1800 (SVA) standard. A whole industry 

infrastructure now supports these standards, 
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including tools, support, consulting, documented 

use models, etc. There are even standard libraries 	

of pre-written and verified assertions that use these 

languages, so even the learning curve has been 

tremendously minimized.

Best of all, people are using formal methods today 

because finally, it does not take someone with a 

Ph.D. in mathematics who understands the under-

lying algorithms of the tools to reap the benefits of 

these tools!

Formal use models
Through working with many customers over the 

years at Siemens EDA, we’ve seen over 17 use cases 

of formal! This demonstrates that companies have 

found a lot of interesting ways that formal model 

checking can add value to their verification method-

ologies. However, 17 is a lot to digest. In this paper, 

we will consider two main categories of formal 

model checking usage, and then list six main use 

models, describing what they are and identifying 

some of the companies that use formal in these 

ways.

Bug hunting and assurance
Formal model checking can be broken down into 

two main categories: bug hunting, and exhaustive 

proof for design assurance (referred to from this 

point on as simply assurance). These categories 

were briefly introduced in the section entitled 

“Formal Model and Analysis.” Here we will describe 

them in a bit more detail.

The following picture visually conveys various facets 

of these two approaches.

The X-axis depicts time, or more precisely, the 

design schedule, with earlier design activities 

happening on the left and later activities on the 

right. The Y-axis represents the bug rate on a 

project.

For example, bug hunting is an approach that can 

occur from the early stages of RTL development. 

Designers can use assertions to test their code 

(usually at the block or sub- block level) very early 

on in the process. This will be an early and highly 

iterative process to ensure high quality code is 

developed from the start. Many (typically low level) 

assertions will be used and will find many bugs. 	

The focus of this approach is on productivity; that 	

is, finding as many bugs as possible as quickly as 

possible.
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On the other hand, as the code firms up and the 

design comes together, the verification team may 

want to verify the design’s behavior by exhaustively 

checking important properties (usually at the design 

level). This method will require more focused atten-

tion, and catch fewer bugs, but these sorts of bugs 

can be very serious in nature. The focus of this 

approach is on assuring that the design meets the 

specification and is thus, of high quality.

Most of the formal use models lean more towards 

one of these approaches than the other.

Six primary use models
The following list describes today’s six most 

common formal use models:

•	 Architectural verification			 

As previously mentioned, this is usually done by a 

formal verification expert, very early on in the 

design’s conceptual development (usually at the 

system level model), and generally uses theorem 

proving techniques. Thus, this use model is not 

commonly found (or at least, not commonly 

visible) in DO-254 programs.

•	 White-box sanity checking		

White-box test refers to the idea that you can see 

inside the design code as you’re testing it. Thus, it 

is usually the designer himself that uses formal in 

this way as a method to do early analysis of the 

RTL code. The designer would create a number of 

assertions (or use assertion libraries) that test his 

code (and the complex structures within it) and 

ensure it operates as he thinks they should.

This usage model is similar to early sandbox testing 

with simulation. As such, this method would likely 

be considered as per Note 2 in DO-254 6.2:

“Informal testing outside the documented verification 
process is recommended. The procedures and 
results, however, are not necessarily maintained 
under configuration management control but are 
highly effective in the detection and elimination of 
design errors early in the design process. Verification 
credit can be taken for this testing only if it is 
formalized.”

So while generally not part of the official DO-254 

verification activities, this use model can be an 

essential part of ensuring that the early code is 

verified as it is developed and thus comes together 

clean and bug-free at integration. Companies such 

as Siemens, Sun (formerly), Qualcomm, Dice, SLE, 

and Alcatel-Lucent are known to use formal 

methods in this way.

•	 Implementation Protocol Verification		

Today’s designs often contain components that 

utilize and support complex protocols, such as 	

PCI express, USB, AMBA, SATA, DDR, and so on. 

Because these are commonly used, companies 

(such as Siemens EDA, and other suppliers of 

verification tools or services) have created pre-de-

signed and verified packages of assertions that 

can be used directly to verify these complex 

protocols. (This model is similar to design intellec-

tual property, but these pre-packaged assertions 

are called verification intellectual property, or VIP)

This use of formal can be done by either the 

designer or the verification engineer. In either case, 

it requires little to no knowledge of assertions, 

languages, or formal methods. It is all very auto-

mated. It also has elements of both assurance and 

bug hunting, depending on who is running the 

testing and at what stage of design. A large number 

of companies use formal in this way, including 

Infineon, Saab, National Semiconductor, MediaTek, 

Brocade, Evatronics and ARM. This use of formal 

would be visible as part of the verification process 

(most likely, for credit) in a DO-254 project.

•	 Black-box (or Grey-box) Testing			 

This method is predominantly an assurance 

approach, where there is a formal test plan that 

identifies the properties that will be verified, and 

the goal is exhaustive proof attainment. A verifi-

cation engineer (and typically one that is experi-

enced in formal methods) will be the main person 

running formal model checking in this way.	
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Companies known to use this approach include DE 

Shaw, SLE, nVidia, AMD, IBM, ST and Infineon. 

This use of formal would be visible as part of the 

verification process (definitely for credit) in a 

DO-254 project.

•	 Coverage Analysis				  

In some cases, it can be very difficult to set up all 

the conditions to stimulate a design and examine 

the response – especially in test complex circuitry. 

When these situations are known, then formal is a 

good alternative to simulation to verify these 

parts of the design. Typically, it is the verification 

team who understands this and opts for this use 

model of formal to augment and assist in closing 

the coverage holes of simulation. Formal can 

generate simulation scenarios that can be 

captured and used as tests in the simulation test 

suite. Companies that use formal in this way 

include Sun (formerly), Tensilica, Alcatel-Lucent, 

Azul, MetaRam, AMD and Hewlett-Packard. This 

use of formal would be visible as part of the 

verification process (most likely, for credit) in a 

DO-254 project.

•	 Post-silicon debug				  

Formal can also be used late in the process to 

assist in silicon debug. When bugs are found in 

the lab, they can be extremely difficult and 

time-consuming to debug. 			 

However, it can sometimes be fairly easy to write 

an assertion to mimic the behavior seen in the lab 

and then run formal verification to flag what is 

causing it. Either the designer or verification 

engineer may become involved to write the asser-

tion and debug the RTL design. At Siemens EDA, 

we know that a number of companies use formal 

in this way, but most do not want to publicly 

acknowledge it (since having bugs escape verifica-

tion and not be caught until silicon is not the ideal 

situation). This use of formal would likely not be 

visible and not used for verification credit in a 

DO-254 project.

Where to use and not use formal
It was once thought that formal would replace 

simulation. After years of pushing this message and 

learning where formal was strong and where it was 

weak, the industry (and most commercial tool 

vendors) now concede that formal methods have 

strengths and weaknesses in terms of where they 

should be used.

A key paper that identified these suggested areas in 

which to use or not use formal methods was 

“Guidelines for creating a formal verification test-

plan,” by Harry Foster, Lawrence Loh, Bahman Rabii, 

and Vigyan Singhal at DVCon 2006.

What follows is a summary of the ideas presented in 

this paper.

When and where to use formal methods:
Control or datapath circuitry with high concurrency 

(and no data transformations)

•	 Arbiters

•	 On-chip bus bridges

•	 Power management units

•	 DMA, interrupt, memory controllers

•	 Bus interfaces 

•	 Schedulers

•	 Standard interfaces

When and where to avoid formal methods:
Datapaths with data transformations

•	 Floating point units

•	 MPEG decoder

•	 Convolution unit in DSP

•	 Graphics shading unit

In general, formal model checking works best on 

control circuitry, datapath circuitry (unless it 

involves data transformations), and circuitry with 

complexity due to concurrency. These are areas that 

are particularly difficult to write tests for simulation. 
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These types of circuits also tend to harbor complex, 

corner-case behaviors. Formal is especially useful in 

these situations.

On the other hand, formal is not good in dealing 

with circuitry that is “often sequential in nature” or 

“potentially involves some type of data transforma-

tion” such as floating point units and MPEG 

decoders.

Formal in software vs. hardware
Many people confuse the formal methods for 	

hardware with formal methods for software. This is 

understandable. The principles are identical. What 

differs is in the practical application.

Using formal methods in software is more chal-

lenging and less practical than in hardware for 

several reasons.

First, the software side offers no “formal friendly” 

coding standards. On the contrary, in hardware the 

industry has been forced to come out with standard 

ways of writing VHDL (Verilog and SystemVerilog) 

code that must be followed for synthesis. 		

This same subset of these languages (referred to as 

RTL coding) is not only formal friendly, but it is the 

way that people have to design to use other tools in 

the flow. Thus, the same design model developed 	

in “Detailed Design” and simulated can be used for 

formal. In the software domain, typically a whole 

new model is created and then this model has to 	

be verified against the “real” model, just adding 	

woe to the design process.

Second, in hardware we are dealing with simpler 

static models (finite state machines) while software 

must deal with dynamic structures and more 

complex infinite state models.

Software can expand and contract on-the-fly, 

creating new structures that require verification 

within the scope of their parent process. Hardware, 

by its very nature, is a fixed number of transistors 

connected in a fixed manner. As a result, the hard-

ware being verified is fixed and static, and the 

application of formal verification is greatly 

simplified.

Finally, formal methods have been used to some 

extent on hardware for 30+ years. The algorithms 	

to do the mathematical analysis of the hardware 

models are well understood, and today’s tools 

contain many self-checks within them.

Thankfully, formal methods in hardware is an easier 

problem to solve and a much more practical meth-

odology to employ than in the software domain.

Still, despite these challenges on the software side, 

the value of formal methods is understood well 

enough that some government programs are now 

requiring secure software applications to be 

formally verified. Similarly, Microsoft formally 

verifies all its device drivers3. Also, some of the 

higher-level systems design analysis tools (such as 

Mathworks4) commonly use formal analysis in the 

verification of their models. This is common practice 

and in fact many DO-254 projects use Mathworks as 

the front-end of their design flows, so knowingly or 

not, they are likely using formal methods.
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Misconceptions and objections
This paper should have cleared up the vast majority 

of these misconceptions. However, to summarize, 

here are a number of the common misconceptions 

and objections to the use of formal methods for 

DO-254 programs.

•	 Formal replaces simulation (a proven method)	

On the contrary, in nearly all applicants, formal 

compliments simulation. Only in very rare circum-

stances would it replace simulation entirely.

•	 You have to use formal on all properties		

You can use formal on any properties you want, 

some or all. We recommend that formal be used 

on the most critical properties and/or those that 

are difficult to fully verify using simulation.

•	 Formal algorithms are not well understood and 

can’t be trusted					  

Most people don’t understand simulator algo-

rithms either, and yet, simulation is widely used 

and accepted.

•	 Since they can’t be understood, Formal tools must 

be qualified					   

Formal tools could be qualified if that’s what the 

applicant chooses. However, the usage model is 

generally such that other verification at other 

stages of design will certainly catch any issues 

possibly missed by formal. Also, it is possible to 

have a flow where formal and simulation directly 

double-check each other.

•	 If designers create assertions, this violates inde-

pendence				  

Assertions state what needs to be verified, not 

who or how it is to be verified. Independence can 

be achieved via review or by someone else actu-

ally running and reviewing the results of verifica-

tion. Assertions that map to functional 

requirements should be reviewed alongside these 

requirements by the team validating the require-

ments. If a designer creates additional structural 

assertions that are reused in verification, someone 

else runs this verification and checks the results.

•	 With formal, you have to create a whole new 

model and that model must be verified This is not 

true. The formal model IS the VHDL (or Verilog or 

SV) design with no modification. This is the same 

as simulation.

Recommendations
•	 ALLOW applicants to use “Formal Methods” for 

DO-254 projects			 

Hopefully it is now obvious that “Formal Methods” 

definitely has a place verifying DO-254 Level A/B 

designs.

•	 Avoid tools that encourage a user to guide the 

tool toward a proof				  

This is mainly intended to ensure caution when 

applicants select a commercial tool. Some tools 

encourage an extreme amount of user interven-

tion. This will make repeatable results more 

difficult to achieve and increase the possibility of 

user error.

•	 Before running model checking (for credit)

	○Decide up-front where formal will be used, and 

why

	○Requirements & associated properties should be 

reviewed (this includes properties used as 

constraints)

	○ “sanity check” properties in functional simula-

tion, paying special attention to constraints

•	 During model checking tool usage

	○Re-run formal after design or property changes

	○Be mindful of the “starting state” (typically reset)

	○Use as few constraints as possible

	○Note: The best proofs are obtained without 

constraints, but this may be unrealistic

•	 During certification, use the Formal Verification 

Checklist presented earlier in this paper
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Formal methods offer a very powerful verification 

technique that can go a long way towards improving 

design assurance. Unfortunately, the description of 

formal methods included in the DO-254 document 

serves to confuse rather than clarify how and when 

formal methods should be used in the context of a 

DO-254 project. This has not served the DO-254 

community well as it has both discouraged appli-

cants from its use for fear of the certification 

process and confused certification authorities who 

do not understand how or why it can be used and 

therefore are likely to discourage its use.

This paper clarified the content of DO-254 Appendix 

B, providing both applicants and certification 

authorities with understandable information 

regarding formal methods operation, usage, and 

usefulness. It described the value of formal and its 

support of design assurance. It discussed industry 

use of formal, citing recent industry studies and 

articles, and elaborated on some of today’s usage 

models for formal model checking. And finally, this 

paper offered encouragement about the promise of 

using formal methods to improve the quality of 

DO-254 compliant designs.

Conclusion
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