
SIEMENS DIGITAL INDUSTRIES SOFTWARE

Understanding formal
methods for use in
DO-254 programs

Executive summary
This paper seeks to take the mystery out of the use of formal methods for hardware
verification. In this discussion, we will first explain formal methods as clearly and
concisely as possible. We will then look at the state of the industry and the changes
over the last decade or so that have enabled the widespread use of formal methods
for hardware verification. With this knowledge in-hand, we will examine and explain
the contents of DO-254 Appendix B 3.3.3 “Formal Methods.” Finally, we will bring this
information together and provide recommendations for using formal methods on a
DO- 254 project.

Harry Foster, Mark Eslinger and David Landoll
Siemens EDA

siemens.com/software

Contents

Introduction� 3

Formal methods overview� 3

What are “Formal Methods”?� 3

Formal methods value for DO-254� 4

Inputs to formal� 5

Why the confusion and why don’t more people use formal

methods?� 5

How formal methods find bugs� 5

DO-254 Appendix B 3.3.3 Formal methods explained� 8

Formal methods definition � 8

Two types of formal� 8

Value of formal� 9

Formal approaches for design assurance� 9

Early stages of design� 9

Entire design, specific components, and other uses� 9

All functions, important properties, unintended behavior� 10

Formal tools and tool assessment� 10

Independent output assessment� 11

Qualification kits� 11

Requirements, properties, and assertions� 11

Formal model and analysis� 12

Todays use of formal� 18

A bit of tool history� 18

Industry data� 18

Why people are using formal� 18

Conclusion� 24

SIEMENS DIGITAL INDUSTRIES SOFTWARE   2

White Paper – Understanding formal methods for use in DO-254 Programs

Formal Verification is one of the most misunder-

stood areas of DO-254. It is one of the few actual

design or verification methods named in the RTCA/

DO-254 document (Appendix B) and is in fact listed

as an appropriate method for the “Advanced

Verification” requirements for Level A/B designs. 	

The problem is that the content of Appendix B is

extremely difficult to understand. The text in this

section was largely taken from texts or papers on

formal methods intended more for the academic

rather than today’s typical user. In addition, it is 	

also too oriented towards formal verification for

software. Add to this, the information is over 20

years old. This has resulted in fear (in the minds of

the project team who wants to use it on their

DO-254 programs but don’t want to increase their

project’s scrutiny) and unease (for the certification

authority who sees its use called out on a DO-254

program but does not really understand this use or

its purpose).

This paper seeks to take the mystery out of the use

of formal methods for hardware verification. In this

discussion, we will first explain formal methods as

clearly and concisely as possible. We will then look

at the state of the industry and the changes over

the last decade or so that have enabled the wide-

spread use of formal methods for hardware verifica-

tion. With this knowledge in-hand, we will examine

and explain the contents of DO-254 Appendix B

3.3.3 “Formal Methods.” Finally, we will bring this

information together and provide recommendations

for using formal methods on a DO- 254 project.

Introduction

Formal methods overview

Even though the practical application of formal

methods was in its infancy during 	 the original

writing of DO-254, the authors of DO-254 certainly

understood the potential of formal methods in

terms of enhancing design assurance. This section

provides some foundational information that can

help you understand why the DO-254 authors felt

formal methods were pertinent and useful in terms

of aiding design assurance.

What are “Formal Methods”?
Formal methods make use of exhaustive mathemat-

ical algorithms to verify the functional correctness 	

of a design against its requirements. Because the

process is exhaustive, the verification answer to the

question “does this design meet this requirement” 	

is guaranteed to be complete. That is, if design can

exhibit any undesirable behavior, formal methods

will point them out. On the other hand, if formal can

prove that no such undesirable behavior exists, then

formal methods will say so.

SIEMENS DIGITAL INDUSTRIES SOFTWARE   3

White Paper – Understanding formal methods for use in DO-254 Programs

Contrast this with commonly used simulation 	

techniques, which is considered a “probabilistic”

approach. This means the tool itself cannot guar-

antee that all undesirable behavior will be identified.

It’s entirely up to the user to think of all possible

undesirable behavior and test each one individually.

This is best explained with an analogy to doing

a math problem. Consider solving the equation

2X² – 8X + 5 = 0 for X. You can brute force and

estimate an answer by trying various combinations

of X and narrowing down the possibilities. This is

similar to how you’d write tests using a directed test

simulation approach. Your attempts might look

something like this. (X is the input, Y is the output.

According to the above equation, we want Y to

equal zero, so our challenge is to find the correct

value of X).

From your test results, you can see that Y is 0 when

X is somewhere between 0 and 1, and again some-

where between 3 and 4. (Note if you stopped testing

after X=1, you also may have thought there was only

one answer!). If you’re happy with that estimation,

that is fine. But if you want to find the exact answer,

you’d simply plug the numbers into your calculator

and use the quadric formula to solve exactly:

A high-end calculator would provide both a graph of

the function and exact values for X (X = 0.775 and X

= 3.225). When the calculator comes back with the

solution, you know that it is accurate and complete.

This is how formal methods work. Formal methods

use mathematical principles in this very same way

to provide a complete and repeatable answer. The

question formal methods answers is whether a

design model implements its intended function.

Formal methods value for DO-254
Today, many companies are using formal methods

as they understand how it uniquely offers value 	

due to its ability to improve design quality. It is a

technique unlike any other in that it can perform

some very essential roles for safety-critical and

mission-critical designs. For example, it is possible

with formal methods to exhaustively verify safe-

ty-critical properties. Likewise, with formal methods

you can explicitly check for situations that you want

to ensure never happen. You can also easily find

unintended and unanticipated design behaviors

with formal methods. This can best be shown

through an example.

Consider the design of an FPGA that controls the

reverse thrusters of an aircraft. A safety- consider-

ation of this design would be to ensure that the

reverse thrusters NEVER fire when the aircraft is

airborne. This would likely result in a catastrophic

failure of the system.

To ensure this detrimental situation could never

happen, you would want to exhaustively verify the

design to prove that there are absolutely no

scenarios where this could happen. With formal

methods, you would check the design to ensure that

SIEMENS DIGITAL INDUSTRIES SOFTWARE   4

White Paper – Understanding formal methods for use in DO-254 Programs

the property “the reverse thrusters can never fire

while in mid-air” always held true. Formal methods

would tell you all the scenarios that violate that

property. This is the true power of formal methods.

With simulation you can verify expected behavior

given defined circumstances, but you can never

fully verify unexpected conditions. Yet simulation

has been the perfectly acceptable approach to

verification. By augmenting traditional simulation

approaches with formal methods, confidence that

the design performs its intended function (a.k.a.,

design assurance) improves.

Inputs to formal
Achieving design assurance as demonstrated above

using formal methods is much easier than most

people realize. All it takes is a formal engine (that

runs mathematical analysis), the design model, and

the requirement. The design model itself is just the

standard RTL model (typically VHDL) that is devel-

oped during the “detailed design” phase, simulated,

and then synthesized. This model requires no addi-

tional work to be used with formal methods.

The requirement would normally be stated in

English (or the natural language used in the project)

where it is captured and traced throughout the

process. In order to use this requirement with

formal methods, the requirement would need to be

written in a formal property specification language.

(You can think of a property as the same thing as

a requirements).

Today there are several industry standard property

languages, which are commonplace and well-under-

stood. Once this formal property description is

written, it should be reviewed against the original

requirement for accuracy. (In fact, this provides

another layer of design assurance in the flow, as

translating a requirement to a formal language is a

very good exercise in requirements validation, as

the translated property must be unambiguous and

verifiable. Going through this process is an excellent

double-check on the validity of the requirement).

Once you have your RTL coded and your require-

ment written as a formal property, you can run

formal. This is really all it takes to exhaustively verify

a safety-critical property. Every violation of the

property identifies unexpected behavior of the

design that must be fixed.

Why the confusion and why don’t more people
use formal methods?
Many people are very intimidated by the thought of

formal methods. They may have learned a little bit

about it in their college days in a very academic

sense only. At the same time, they’ve been using

simulation for many years. How to run simulation is

well understood.

However, if you stepped back and really examined

how a simulator works alongside how a formal

methods engine works, formal methods actually are

simpler in concept.

However, formal methods often suffer from a legacy

stigma as being a method only suitable for those

who have a Ph.D., or at least a propensity for math.

While this may have been true 20+ years ago, before

commercial tools, RTL coding standards, and prop-

erty specification languages, today it is simply an

artifact of a time gone by. The creation of intuitive

user apps leveraging sophisticated formal engines

has drastically lowered the barrier of entry to use

formal methods.

How formal methods find bugs
It’s perhaps natural that some misconceptions about

formal methods remain. After all, the very idea that

a commercially available tool can readily take a RTL

design and a simple-to- specify property and

exhaustively verify its functional correctness sounds

impossible. Simply put: It sounds too good to be

true. As a result, many people are skeptical that it

really does exist. With that in mind, let’s try to

explore how a formal tool can find bugs in a design.

SIEMENS DIGITAL INDUSTRIES SOFTWARE   5

White Paper – Understanding formal methods for use in DO-254 Programs

First, think of a design as a collection of registers

and input pins. For standard digital designs, when

you change the input stimulus and apply a single

clock, the state of the design will change. That is,

the design will change its behavior and do some-

thing different. Change the inputs, give another

clock, and the design state will change again. As

long as the design keeps doing things that are

expected and meeting its requirements, it’s oper-

ating within its “legal state space.”

On the other hand, if the design ever does some-

thing illegal that violates its requirements, we can

say the design has moved into “illegal state space,”

and the design has a bug.

Simulation works fairly intuitively. It walks through

the design’s behavior changing input signals, giving

a clock, changing input signals, giving a clock, etc.

Repeat this process until the simulation test reaches

its end, where some output value is typically

compared against an expected value. If the output

value matches its expected value, the test is said to

“PASS.” If not, then the test “FAILED.” It makes perfect

sense. One can even perform this task manually by

tediously propagating values through the design to

determine what the design will do next.

The key problem to this approach is obvious to

anyone that has functionally verified a design of any

complexity. If the collection of simulation tests fails

to exercise some portion of the design, then a bug

may exist that was previously unknown. In some

cases, this could be an unexpected combination of

conditions that is difficult to predict.

Formal verification does things a bit differently. Formal

flips the entire problem on its head. By using a property

to directly define legal vs. illegal state behavior, formal

asks the question: “Is there any possible way to get from

a legal state to an illegal state.”

To perform this analysis, formal starts with a single

state, which is typically the “reset state” (the state

reached after the reset signal is applied). Formal

then thinks about all the possible behavior, all the

combinations and permutations of 1s and 0s across

all input signals. It calculates how the design will

behave as a result of each and every one of these

inputs and remembers the result. Then for each one

of these results, formal again considers each and

every possible input combination and permutation,

and how the design will respond, again remem-

bering all results.

SIEMENS DIGITAL INDUSTRIES SOFTWARE   6

White Paper – Understanding formal methods for use in DO-254 Programs

At each result, formal asks itself, “is this result illegal

with respect to the specified property?” If so, then

the tool has found a way that the design doesn’t

meet its requirement, and it is reported to the user.

If not, the procedure continues. Eventually, formal

will realize that it has examined all possible results,

indicating there is no illegal behavior possible, and a

“proof” of correctness results.

For the example requirement below, the property

simply states that “if we currently see activate_rev_

thrusters, then it implies that we must already have

weight_on-wheels.” If not, then we’ve reached an

“illegal state space.” This is using the IEEE industry

standard SystemVerilog Assertion language.

As you can imagine, the number of results the tool

needs to compute and remember grows exponen-

tially. It’s only in the past 10 years that very clever

formal algorithms, combined with very fast

computers, have allowed formal methods to be

applied in practical ways.

Hopefully this has somewhat de-mystified the

formal methods process. With this basic

understanding in mind, we can now move on to

explore the DO-254 spec related to this topic.

SIEMENS DIGITAL INDUSTRIES SOFTWARE   7

White Paper – Understanding formal methods for use in DO-254 Programs

This section examines the actual text of Appendix B,

3.3.3, looking at exactly what is written, in the order

it is written, and explaining it one small piece at a

time. Information that is pulled directly from DO-254

is highlighted in blue text for clarity.

Formal methods definition
The text of DO-254 says:

3.3.3 Formal Methods

The term formal methods refers to the use of

techniques from logic and discrete mathematics

in the specification, design and construction of

computer systems.

Note: The material in this section is derived from

“Formal Methods Specification and Analysis

Guidebook for the Verification of Software and

Computer Systems, Volume II: A Practitioner’s

Companion,” May 1997, NASA-GB- 001-97. A more

detailed presentation of the application of formal

methods, illustrated with a worked example, can

be found there.

As previously mentioned, formal methods are math-

ematical methods. They use the proven principles of

mathematics as the foundation of their analysis.

Also look at this note. This basically says that the

information in this appendix is taken from a publica-

tion from 1997 that focuses on software and computer

systems. Later in this paper we will talk about the

changes that have occurred since the mid-90s and the

status of usage today. Later in the paper, we will also

clarify the differences between formal verification of

software and hardware, because they can be signifi-

cant in terms of practical application.

Two types of formal
Applications of formal methods fall into two broad

categories, descriptive and deductive. Descriptive

methods employ formal specification languages,

which provide for clear, unambiguous descriptions

of requirements and other design artifacts.

Deductive methods rely on a discipline that requires

the explicit enumeration of all assumptions and

reasoning steps. In addition, each reasoning step

must be an instance of a small number of allowed

rules of inference. The most rigorous formal

methods apply these techniques to substantiate the

reasoning used to justify the requirements, or other

aspects of the design or implementation of a

complex or critical system.

DO-254 Appendix B 3.3.3
Formal methods explained

SIEMENS DIGITAL INDUSTRIES SOFTWARE   8

White Paper – Understanding formal methods for use in DO-254 Programs

Value of formal
The purpose of formal methods is to reduce reliance

on human intuition and judgment in evaluating

arguments. That is, deductive formal methods

reduce the acceptability of an argument to a calcu-

lation that can, in principle, be checked by a tool,

thereby replacing the inherent subjectivity of the

review process with a repeatable exercise.

This text clarifies the value of formal, and why it is

important. Formal methods provide a mechanism

for automating analysis that is simply too difficult to

do manually because it would depend too much on

a person’s intuition and judgment – which can

certainly vary from person to person, yielding

perhaps different and incomplete results. Formal is

consistent, complete, and repeatable.

As an analogy, using formal to verify a hardware

design is not much different than using a calculator

to solve a math problem. Both utilize the principles

of math, automate a difficult problem, and even if

the underlying technology is not well understood by

the masses, this doesn’t stop the tool from providing

significant value. Hence, you do not need to be a

math expert to apply formal methods.

Formal approaches for design assurance
The next part of the Appendix B text begins to discuss

how Formal plays a role in improving design assurance.

There are several areas where application of formal

methods provides additional assurance in the design

process. Although formal methods are applicable

throughout the design process, increases in design

assurance may be obtained by targeted application.

The following list highlights some of the

possibilities:

1.	 Early stages of design

2.	 Entire design, specific components, and

other uses

3.	 All functions, important properties,

unintended behavior

Early stages of design
Formal methods may be applied at different stages

of the development life cycle. Generally, applications

of formal methods are most effective at the early

stages of the life cycle, specifically during require-

ments capture and high-level design.

This is referring to the use of formal at the earliest

stages of design, such as requirements capture and

conceptual design.

System architects often use formal methods as they

are evaluating early system models and possible

architectures. Since DO-254 is currently scoped

(through AC20-152) to the component (PLD, FPGA,

ASIC) level, this is an interesting fact, but not neces-

sarily something you will see done at the conceptual

design of the component—the system perhaps—but

not the component.

On the requirements side however, formal can play a

vital role, even if scoped to the component level. We

will see in a moment how formal is linked tightly to

requirements, and why this is such an important

aspect of the value provided by formal. But for now,

suffice it to say that in translating requirements to 	

a formal language, this can lead to bugs or issues in

the requirements being found very early in the

design process – during requirements capture and

validation-- where they pose minimal cost and

schedule risk.

Entire design, specific components, 		
and other uses
Formal methods may be applied to the entire design

or they may be targeted to specific components. 	

The FFPA is used to determine which FFPs to 	

analyze with formal methods. Protocols dealing with

complex concurrent communication and hardware

implementing fault-tolerant functions may be effec-

tively analyzed with formal methods.

SIEMENS DIGITAL INDUSTRIES SOFTWARE   9

White Paper – Understanding formal methods for use in DO-254 Programs

Formal methods may be applied to the entire design

or they may be targeted to specific components. 	

The FFPA is used to determine which FFPs to analyze

with formal methods. Protocols dealing with

complex concurrent communication and hardware

implementing fault-tolerant functions may be

effectively analyzed with formal methods.

In theory, formal can be applied to the entire

design. However, a reality of design complexity and

tool capacity is that unless the design is fairly small,

applying formal to the whole design is not generally

practical. Today, it is far more common to see formal

applied to specific components, or rather, blocks of

the design. Here the problem space is much more

conducive to an exhaustive verification approach.

Another interesting approach to using formal would

be to provide added assurance (verification) to the

safety-specific aspects of the design, such as the

functional failure paths and safety-critical functions.

Another sweet spot for formal use today is in veri-

fying very complex hardware, especially with

concurrent functions. Likewise, formal could be

used to validate the correct operation of fault-tol-

erant functions, ensuring it is indeed completely

resistant to fault conditions.

All functions, important properties, unin-
tended behavior
Formal methods may be applied to verify system

functionality, or they may be used to establish

specific properties. Although formal methods have

traditionally been associated with “proof-of-correct-

ness,” that is, ensuring that a component meets its

functional specification, they can also be applied to

only the most important properties. Often, it is

more important to confirm that a design does not

exhibit certain undesirable properties, rather than

to prove that it has full functionality.

This indicates that formal can be used to verify all

system functions or just some of them, perhaps 	

only the most important. Again, this goes back to

scoping how formal is being used. Will it be used 	

for all properties, to exhaustively verify the entire

design? This is possible, but as mentioned before,

it’s generally not a practical approach. More likely,

formal will be used to verify a select set of proper-

ties, usually those of most concern.

During the course of verifying properties, formal

also provides a unique side benefit – it finds unin-

tended behavior. This is something very difficult to

achieve with a simulation-only approach. This is

where “reliance on human intuition and judgment”

is not good practice. Instead, using an exhaustive

mathematical analysis can provide tremendous

value in safety- critical designs. We will talk more

about how this is done in future sections.

Formal tools and tool assessment
Practical application of formal methods typically

requires tool support. Tools used should be assessed

and, if necessary, qualified as described in Section

11.4.

This should come as no surprise to anyone. You

need tools to run formal analysis. These tools should

not be treated any differently than any other verifi-

cation tools used in the design flow.

It is not uncommon to hear the objection “How can

we trust the results, if we don’t understand how the

tool works?” But think about it. How many people

really understand how simulator algorithms work,

or the circuitry within a calculator for that matter?

Very intelligent people, who do understand how

these things work, have engineered these products

for the benefit of the masses.

Now, this does not mean they should simply be

trusted. There should be no “trust” in a DO- 254

program. No two tools, just like no two people, 	

are alike. That is why all work must be reviewed,

double-checked, or proven worthy of the task.

SIEMENS DIGITAL INDUSTRIES SOFTWARE   10

White Paper – Understanding formal methods for use in DO-254 Programs

Two main approaches can be used for assessing

formal tools.

1) Independent output assessment
As we will see in a bit, simulation and formal

methods are complimentary. They are generally

used together in a flow. In many ways, they

approach the verification problem very differently

and, in this regard, provide different ways of looking

at the verification problem. Verification flows that

use both typically have some amount of overlap and

double-checking. This double-checking can also be

explicitly done if there are concerns about the tool

outputs.

In addition, throughout a DO-254, each stage 	

of design requires additional verification. Formal

methods are usually done early in the design

process. Numerous other verification methods and

techniques will also be run later in the process, on

models of lower abstraction levels, on the HW item

itself, and with the HW item in the target system.

Each of these additional verification methods and

processes should be verifying previous verification

work. A good DO-254 flow will automatically have

these checks and balances (that support indepen-

dent output assessment) built in. This is the best

approach.

2) Qualification kits
It would also be possible to provide a set of test

cases that could ship with the tool. These test cases

could run in both simulation and formal to explicitly

force both types of tools to verify the cases. The

results of both should match.

While this is certainly just a tiny fraction of the sort

of testing that is done on these tools by their devel-

opers, and therefore the value of this sort of process

is highly questionable, if certification authorities

required it, it could be done. Tool vendors or the

hardware applicant could come up with such a test

suite.

Requirements, properties, and assertions
3.3.3.1 The Methodology of Formal Methods

The application of formal methods begins by

expressing the requirements using a formal

language. The requirement specification serves an

important descriptive function. It provides a basis

for documenting, communicating, and prototyping

the behavior and properties of a system using an

unambiguous notation.

Finally, we are able to tie formal methods to a

requirements-based design process. We start by

defining some terms to so we can see how formal

methods works and how it can truly be a require-

ments-based verification approach.

A requirement is a description of design intent/

behavior. The customer, architect, or designer (all

the people who may have a hand in writing require-

ments) usually writes requirements in their native

language (such as English). The problem with this is

that native languages like English are very ambig-

uous, and prone to various interpretations. Even

though requirements are reviewed and validated,

oftentimes, bugs later in the process tie back to

misinterpretation or misunderstandings of the

actual intent of a requirement.

With formal methods, an engineer must translate

the native language requirement into a formal

language description of this requirement. The

formal description of a requirement is called a

property. A property specifies a requirement unam-

biguously in a formal language that enables tool

use. Because the formal language is unambiguous,

the tool can interpret the property only one way.

One of the major barriers to adoption of formal

methods prior to the year 2000, was the lack of

standardization of these formal languages. Today,

the industry has adopted two languages for the

specification of properties: PSL (Property

Specification Language, IEEE 1850) and SVA

(SystemVerilog Assertions, IEEE 1800). As IEEE

standards, this ensures that a whole industry

SIEMENS DIGITAL INDUSTRIES SOFTWARE   11

White Paper – Understanding formal methods for use in DO-254 Programs

infrastructure exists for their support (documenta-

tion, libraries, tools, training, etc.).

The property is merely a mechanism to formally

capture design intent. In order to tell a tool that you

want to do something with a property, such as

monitor it during simulation, and check it with

formal verification, you must assert it. Thus, an

assertion is a tool directive to “turn on” a property

for verification.

An example can make this more concrete. Suppose

you have the following design requirement from our

earlier example.

An example can make this more concrete. Suppose

you have the following design requirement from our

earlier example.

“The reverse thrusters shall never deploy in flight.”

This can be formally described as a property (in this

case, using SVA) as follows:

property REVERSE_THRUSTERS_001;		

@(posedge clk)

activate_rev_thrusters |->

weight_on_wheels_notification;

endproperty

This description will passively sit in the code (i.e.,

the design code or a separate verification file) doing

nothing until you decide to use it in verification. You

do this through an assertion as follows:

property REVERSE_THRUSTERS_001;

@(posedge clk)

activate_rev_thrusters |->

weight_on_wheels_notification;

endproperty

assert property REVERSE_THRUSTERS_001;

The “assert” keyword triggers the simulator to

monitor the property during simulation. Likewise,

all asserted properties are checked when formal

runs.

Formal model and analysis
In addition, the requirements specification serves as

a basis for calculating or formally predicting system

behavior. A formal model of the component to be

analyzed is constructed using a formal language.

The model is analyzed with respect to the formal

statement of requirements using the rules of the

selected formal logic. The characteristics of the

model are determined by the style of formal analysis

to be performed.

As we have just demonstrated, requirements

become a key aspect of formal analysis when they

are written as properties and asserted. Next you

need a formal model.

This is another key area of misunderstanding with

regards to formal use in hardware. You do not need

a separate model to be used for formal analysis. The

formal model is simply the RTL model, which in the

military/aerospace industry is typically VHDL code

(or Verilog, SystemVerilog, mixed languages).

How or why can the RTL be used as the formal

model? Consider this. To simulate the model, you

have to compile the VHDL code into a set of primi-

tives or C code that is executed by the simulator.

This is the same with synthesis – the RTL model is

compiled into a gate-level model. Similarly, with

Formal, the RTL model is compiled into a mathemat-

ical model. They all start from the same RTL model

and translate it to the internal model appropriate to

fulfill their task.

The formal analysis process compares the model

(e.g., the VHDL) to the requirement (via the asser-

tion), calculating whether the requirement is true

within the model.

SIEMENS DIGITAL INDUSTRIES SOFTWARE   12

White Paper – Understanding formal methods for use in DO-254 Programs

The level of detail in the component model is deter-

mined by the goal of the chosen formal analysis

technique. Some approaches are tailored to finding

design errors that may have eluded testing, while

other approaches seek to guarantee the absence of

certain classes of design errors.

For use in DO-254 projects, the formal model is the

RTL model (e.g., the VHDL code). A number of

formal techniques can be used on this model,

including searching for bugs (i.e., bug hunting)

versus trying to exhaustively prove no bugs exist

(i.e., assurance). Both find bugs, but the goals are

different. The first approach attempts to quickly

identify bugs in a non-systematic fashion using

formal techniques. The second approach is a

comprehensive and systematic methodology to

achieving assurance, at a potential cost of more

effort and time.

(Formal) model checking
1.	Error-Detection. The most common formal tech-

nique for error detection is called model checking.

Here the requirements are expressed as formula	

 in a decidable temporal logic. The model of the

component is an abstract state machine designed

so that the property to be tested is preserved. 	

The proof procedure is automatic. A failed proof

attempt indicates a design error in the modeled

component. The result of failed proof is a

sequence of input stimuli that demonstrate 	

specifically how the component does not satisfy

the stated requirement.	

Formal model checking, or simply model checking,

is the formal analysis process we just introduced. 	

In this common use of formal methods, a formal

analysis tool checks a design model against its

requirements. The output of model checking

includes proofs or failed proofs. We will talk about

this more in section “Outcomes of Formal Model

Checking.”

Model checking compliments simulation
Something that is important to understand about

model checking is that it should generally not take

the place of simulation, but rather be used along-

side of it.

In the early days of commercial formal tools, compa-

nies that sold these tools believed so strongly in

their verification abilities that they often promoted

these solutions as the replacement for simulation.

However, as the use of formal has become more

common place, it has also become more and more

apparent that both simulation and formal analysis

are necessary to ensure a design is thoroughly

verified. Thus, the vast majority of companies who

use formal today do so in a manner that is comple-

mentary with simulation. This is because both

simulation and formal analysis have their sweet

spots, and pitfalls.

Simulation allows you to create and verify just about

any type of circuitry or situation that you are

creative enough to think of. It operates with a

model of the design environment (called the test-

bench) sending stimulus (or test cases) to the model

of the design (called the device under test, or DUT),

and checking the model’s response. The simulation

test environment is typically developed by one or

more verification specialists. Simulation is very

flexible, but the tests are only as good as the skill of

the verification team creating them.

Simulation is rarely, if ever, exhaustive (except for

the most simplistic of circuitry). For today’s large

designs, simulation might demonstrate the pres-

ence of a bug, but unlike formal, it can never prove

the absence of a bug.

SIEMENS DIGITAL INDUSTRIES SOFTWARE   13

White Paper – Understanding formal methods for use in DO-254 Programs

Formal model checking does not require a testbench

or any input stimulus. The test cases are simply the

assertions that are written from the requirements.

This enables testing to start much earlier in the

process because far less infrastructure is needed.

Often (but not always) this early testing is done by

the designer himself. In this regard, the designer is

checking his code (part of the model) a bit at a time,

against the pertinent requirements. The assertions

can be reused for official verification work done

independently by verification team. These asser-

tions can also be used during the simulation activi-

ties that are done by this team (note that this is a

very common practice, but somewhat beyond the

scope of this specific paper). The drawback with

formal is that it is a highly intensive computational

process that consumes huge amount of memory

and computing power. For this reason, it is best

used at the block level of design, is best suited for

certain types of circuitry (this is elaborated in

“Where to Use and Not Use Formal”) and may

benefit from requirements being broken down into

multiple, smaller assertions. If scoped and used

appropriately, formal provides exhaustive analysis.

Formal also runs much more quickly than

simulation.

The following table summarizes the use of simula-

tion and formal methods (including how they are

different, and how they complement each other) 	

for verification:

Issue Simulation Formal
Model (DUT) RTL (e.g., VHDL) RTL (e.g., VHDL)

Testbench Required None

Test cases Usually hand created Automatic (via assertions)

Types of Circuitry Supported Just about all Some better than others

Design Level Block or Top Level Block Better

Exhaustive No Yes

Linked to Requirements Depends on testcases
Yes, requirements-based
assertions

Support Assertions Yes Yes, required

Used for Early Verification
Prohibitive (infrastructure
needed)

Well suited

Theorem proving
2.	Error Preclusion. Formal methods targeted to

prevention of errors are generally based upon	

 an expressive specification language with a

supporting proof theory. With the increased

expressiveness, more complicated requirements

may be stated, and more detailed models of the

component may be constructed. However, the

proof procedure may only be partially automated.

An appropriate level of detail for the component

model may be a synthesizable HDL description. In

some cases, the same model may be used both for

simulation and formal analysis. A completed proof

is evidence that the component is logically correct

with respect to the stated requirements for the

analyzed input space.

This section of DO-254 is admittedly quite

confusing. It is talking about a formal methods

technique called Theorem Proving. While theorem

proving is not uncommon for academics and Ph.D.

types who focus on systems analysis and architec-

tures (in fact “error preclusion” means trying to find

bugs in the architecture upfront, prior to RTL devel-

opment), it is unlikely to be used today on compo-

nent level development in DO-254 compliant

programs. Therefore, at this time, for the current

scope of DO-254, this text is something that is not

relevant.

SIEMENS DIGITAL INDUSTRIES SOFTWARE   14

White Paper – Understanding formal methods for use in DO-254 Programs

Outcomes of formal model checking
3.3.3.2	 Formal Methods Resolution

There are three possible outcomes of a deductive

formal analysis:

1.	If the proof attempt is successful, the verification

activity is complete. The level of design assurance

depends upon the fidelity of the models

employed. For example, if the model of the 	

hardware item corresponds to a detailed design,

the proof provides assurance of functional correct-

ness equivalent to that of exhaustive testing.

2.	In some cases, a failed proof results in an explicit

counter-example; that is, it identifies a test

scenario to illustrate specifically how the design

does not meet the stated requirements. This may

indicate either a deficiency in the design or a

deficiency in the requirements. Such deficiencies

may be resolved by correcting the design, revising

the requirements, shown to not be a physically

realizable condition or using another method. All

counter-examples should be identified so that

they can be resolved. Changes to the design or

requirements need to be reflected back to the

appropriate process.

a.	 After a design or requirement has been modified

to address a deficiency identified by a failed

proof attempt, the proof should be attempted

again to confirm that the modification has

successfully addressed the identified problems.

This cycle is repeated until a successful proof is

achieved.

b.	 In cases where a counter-example is considered

resolved without requirement or design changes

but the tool identifies only one counter-

example, that is, the resolved counter-example,

the process should be modified so that it can

identify all other counter-examples.

3.	The most difficult case to resolve is when a proof

cannot be produced and a counterexample cannot

be identified. One possible option is to revise the

design in order to simplify the verification effort.

Alternatively, the verification activity may be

decomposed with a clear delineation between the

cases addressed by proof and those cases where

the requirement needs to be addressed by some

other means. Changes to the design and derived

requirements should be reflected back to the

FFPA.

This is a lot of text to say something rather simple.

Basically, model checking produces one of three

outputs as follows:

•	 Proof						

A proof provides evidence that exhaustive analysis

reveals that a model will always operate according

to the requirement (no exceptions).

•	 Counter-example				

An exception is found. Each counter-example

provides a waveform (that can be used in 		

simulation) that demonstrates a condition 	

where a model violates a property.		

Usually a counter-example indicates unintended

behavior of the design.

•	 Inconclusive					

This situation indicates that given the current

conditions, a tool is unable to come up with one

of the previous options. Thus, more verification

work must be done. This typically involves

breaking down the problem to something simpler,

either by scoping the amount of circuitry being

analyzed or breaking the requirement down into

multiple smaller requirements.

If you would like a better understanding of how

model checking works, and the algorithms

employed to come up these results, numerous

papers and publications are available that describe

this. For example, Siemens EDA has lots of content

and webinars related to formal verification at:

https://eda.sw.siemens.com/en-US/ic/questa/

formal-verification/ .

SIEMENS DIGITAL INDUSTRIES SOFTWARE   15

White Paper – Understanding formal methods for use in DO-254 Programs

Formal methods data
3.3.3.3 Formal Methods Data The data developed

during the application of formal methods includes:

1.	Description of the specific formal methods

approach to be used and the components or FFPs

to which formal methods will be applied.

2.	Formal statement of requirements.

3.	Formal models of the component.

4.	Proof, or sufficiently detailed script to generate

proof, relating the models of the component to

the formal statement of requirements and

including correlation in the traceability data.

5.	Identification of tools employed and tool assess-

ment results.

6.	Identification of the verification test cases and

requirements added or modified as a result of the

analysis.

7.	Statement of the level of the verification

completeness achieved for the FFPs addressed by

analysis. Include a list of the analysis discrepan-

cies not resolved by modification to verification

test cases or requirements and their rationale for

acceptability of the discrepancies.

This text tries to clarify the types of data that must

be created and reviewed if formal methods are to be

used in a DO-254 project.

Formal Data Checklist
The following list explains this in more detail. You

can use this list a checklist for the data that should

be used and review when formal methods are used

on a DO-254 program.

1.	Description of the formal methods approach	

The section entitled “Formal Use Models”

describes some of the ways that people are using

formal methods today. In terms of the DO-254

project, the Verification and Validation Plan docu-

ment should capture a description of how specifi-

cally formal is being used on the project. It should

cover who is using formal methods, at what stage

of design, on which blocks/circuitry/properties

and for what purpose.

2.	Formal statement of requirements 		

(i.e., properties)				

The formal descriptions of requirements are the

design properties, written in an industry standard

property language, such as the IEEE-1850 PSL or

the IEEE-1800 SVA. The property should be thor-

oughly reviewed (alongside the requirement),

documented and linked to its corresponding

requirement. Note that in some cases, a require-

ment may have more than one corresponding

property.

3.	Formal model					

The formal model is just the VHDL (or Verilog, or

SystemVerilog) design code. No modifications are

necessary. This model is already part of the design

flow and should not be treated any differently as

it would be for simulation or other verification

activities.

4.	Proofs, results, traceability 			

Proofs, along with the repeatable scripts/methods

that generate the proofs, should be captured in

documentation, reviewed, and perhaps even

demonstrated during reviews or audits. The

proofs are considered the verification results and

thus complete the traceability loop from require-

ment to property to process (script) to results

(proof).

5.	Tools and assessment				

Just as any other design or verification process,

the tools and assessment methods must be docu-

mented in the PHAC or V&V Plan. Since formal

methods will typically be used alongside simula-

tion, and in fact the formal methods tool produces

test cases (in the form of counter-examples for

simulation) for simulation, a typical approach may

be independent output assessment via simulation.

SIEMENS DIGITAL INDUSTRIES SOFTWARE   16

White Paper – Understanding formal methods for use in DO-254 Programs

6.	Counter-examples, new tests, new properties	

Achieving a full proof may not occur on the first

try. For example, when the formal tool discovers

design behavior that violates a property, the tool

produces a counter- example (i.e., a waveform)

that demonstrates the unintended behavior. This

counter- example can and should be run in simu-

lation, and in fact can be added to the simulation

test suite as a new test for regressions. These

sorts of new tests should be documented and

treated the same as other simulation tests (i.e.,

reviewed, traced, etc.). At other times, a property

may be too difficult to verify as it stands (e.g., the

tool may run out of memory trying). In these

situations, the property may need to be broken

down into multiple properties, or similarly, a

property may need to be run first within smaller

portions of the design. When these situations

occur, they should be documented and reviewed.

7.	Formal methods results				

The V&V Plan stated the intent of formal methods,

including the use model and goals. Perhaps the

intent was to exhaustively verify a handful of

safety-critical properties. When formal methods

analysis is complete, the results (in this case,

formal proofs) should be reviewed against the

goal to ensure the goals were met. In this

example, if a proof was achieved for each safe-

ty-critical property, then the goal was met. If not,

most likely steps were taken as described in step

6, which should all be documented. If a targeted

property (or block or structure) has not been

thoroughly verified via formal methods as per the

plan, justification should be made as to why it is

not necessary, or which alternative verification

methods will be employed to ensure an appro-

priate level of testing.

Summary of Appendix B,			
3.3.3 Formal Methods
Formal methods is a mathematical analysis

approach. Model checking (a common type of

deductive formal analysis) automatically verifies a

design model against requirements. Model checking

can improve design assurance by exhaustively

verifying circuitry and finding unintentional

behavior. Note that model checking is compli-

mentary to simulation.

The following figure provides a visual summary of

the model checking process:

SIEMENS DIGITAL INDUSTRIES SOFTWARE   17

White Paper – Understanding formal methods for use in DO-254 Programs

Today’s use of formal

This section examines the state of the industry

today, including the evolution of formal methods for

hardware over the last 20+ years, who is using it

today, how are they using it, and why.

A bit of tool history
The development of commercial formal methods

tools for hardware began in the late 1990’s. Prior to

this, the only tools available for formal model

checking were developed in academia and never

commercialized due to numerous impracticalities

and inadequacies (such as user interfaces, integra-

tion with existing flows, standards, use models,

marketing and support).

One of the first companies to focus on developing

commercial formal model checking tools was 0-In

(acquired by Mentor Graphics and now part of

Siemens EDA). By early 2000, 0-In had launched

several commercial model checking products, and

since that time numerous products and apps have

been produced along with quantum leaps in solver

technology capabilities. Around this same time,

several other companies (Cadence, Synopsys,

Averant, Real Intent, OneSpin) followed suit. Since

then, the market has grown from virtually nothing

to around $300M.

Industry data
The Wilson Group Survey is done every two years

and reveals significant growth in formal. The 2020

analysis of the ASIC and FPGA markets reported

significant growth for both property checking and

formal apps. For the ASIC markets, property

checking has a four year CAGR of over 8%, and the

formal apps over this same period has a 19% CAGR.

The FPGA market for property checking has a four

year CAGR of 5% for property checking and a four

year CAGR of 12% for the formal apps. This indicates

that people are using formal methods today, often

as plan of record, and usage is on the rise.

As a commercial vendor of formal analysis tools,

Siemens EDA has witnessed these same trends.

Today we have a large number of formal model

checking tool customers, many of whom are

currently using these tools on DO-254 programs.

Why people are using formal
Regardless of the particular use model or method-

ology, by far the number one reason people use

formal is for improved quality. Improved quality

means more assurance that the design operates as

it should. Thus, formal is primarily used today to

improve design assurance, which is the driving force

behind DO-254 compliance.

Another benefit of formal is that it’s much easier to

tie formal verification activities to design require-

ments – after all, that is what model checking does.

It checks a model against requirements for that

model. With simulation this is harder. You can

certainly write tests that map to requirements, but

it’s much more difficult to ensure you have thor-

oughly tested a requirement with simulation. With

formal, you exhaustively test a requirement, or you

find situations where the requirement is violated.

These examples of violations demonstrate unin-

tended behaviors of the design, which is again

difficult to find with simulation. Certainly, you

might get lucky and find these things with simula-

tion, but formal provides conclusive, exhaustive

evidence of these behaviors (and waveforms

demonstrating the behavior that you can double-

check in simulation).

People are using formal more and more these days

because the majority of barriers have been broken

down. Previously, no standard assertion languages

existed. Today we have IEEE- 1850 (PSL) standard

and the IEEE-1800 (SVA) standard. A whole industry

infrastructure now supports these standards,

SIEMENS DIGITAL INDUSTRIES SOFTWARE   18

White Paper – Understanding formal methods for use in DO-254 Programs

including tools, support, consulting, documented

use models, etc. There are even standard libraries 	

of pre-written and verified assertions that use these

languages, so even the learning curve has been

tremendously minimized.

Best of all, people are using formal methods today

because finally, it does not take someone with a

Ph.D. in mathematics who understands the under-

lying algorithms of the tools to reap the benefits of

these tools!

Formal use models
Through working with many customers over the

years at Siemens EDA, we’ve seen over 17 use cases

of formal! This demonstrates that companies have

found a lot of interesting ways that formal model

checking can add value to their verification method-

ologies. However, 17 is a lot to digest. In this paper,

we will consider two main categories of formal

model checking usage, and then list six main use

models, describing what they are and identifying

some of the companies that use formal in these

ways.

Bug hunting and assurance
Formal model checking can be broken down into

two main categories: bug hunting, and exhaustive

proof for design assurance (referred to from this

point on as simply assurance). These categories

were briefly introduced in the section entitled

“Formal Model and Analysis.” Here we will describe

them in a bit more detail.

The following picture visually conveys various facets

of these two approaches.

The X-axis depicts time, or more precisely, the

design schedule, with earlier design activities

happening on the left and later activities on the

right. The Y-axis represents the bug rate on a

project.

For example, bug hunting is an approach that can

occur from the early stages of RTL development.

Designers can use assertions to test their code

(usually at the block or sub- block level) very early

on in the process. This will be an early and highly

iterative process to ensure high quality code is

developed from the start. Many (typically low level)

assertions will be used and will find many bugs. 	

The focus of this approach is on productivity; that 	

is, finding as many bugs as possible as quickly as

possible.

SIEMENS DIGITAL INDUSTRIES SOFTWARE   19

White Paper – Understanding formal methods for use in DO-254 Programs

On the other hand, as the code firms up and the

design comes together, the verification team may

want to verify the design’s behavior by exhaustively

checking important properties (usually at the design

level). This method will require more focused atten-

tion, and catch fewer bugs, but these sorts of bugs

can be very serious in nature. The focus of this

approach is on assuring that the design meets the

specification and is thus, of high quality.

Most of the formal use models lean more towards

one of these approaches than the other.

Six primary use models
The following list describes today’s six most

common formal use models:

•	 Architectural verification			

As previously mentioned, this is usually done by a

formal verification expert, very early on in the

design’s conceptual development (usually at the

system level model), and generally uses theorem

proving techniques. Thus, this use model is not

commonly found (or at least, not commonly

visible) in DO-254 programs.

•	 White-box sanity checking		

White-box test refers to the idea that you can see

inside the design code as you’re testing it. Thus, it

is usually the designer himself that uses formal in

this way as a method to do early analysis of the

RTL code. The designer would create a number of

assertions (or use assertion libraries) that test his

code (and the complex structures within it) and

ensure it operates as he thinks they should.

This usage model is similar to early sandbox testing

with simulation. As such, this method would likely

be considered as per Note 2 in DO-254 6.2:

“Informal testing outside the documented verification
process is recommended. The procedures and
results, however, are not necessarily maintained
under configuration management control but are
highly effective in the detection and elimination of
design errors early in the design process. Verification
credit can be taken for this testing only if it is
formalized.”

So while generally not part of the official DO-254

verification activities, this use model can be an

essential part of ensuring that the early code is

verified as it is developed and thus comes together

clean and bug-free at integration. Companies such

as Siemens, Sun (formerly), Qualcomm, Dice, SLE,

and Alcatel-Lucent are known to use formal

methods in this way.

•	 Implementation Protocol Verification		

Today’s designs often contain components that

utilize and support complex protocols, such as 	

PCI express, USB, AMBA, SATA, DDR, and so on.

Because these are commonly used, companies

(such as Siemens EDA, and other suppliers of

verification tools or services) have created pre-de-

signed and verified packages of assertions that

can be used directly to verify these complex

protocols. (This model is similar to design intellec-

tual property, but these pre-packaged assertions

are called verification intellectual property, or VIP)

This use of formal can be done by either the

designer or the verification engineer. In either case,

it requires little to no knowledge of assertions,

languages, or formal methods. It is all very auto-

mated. It also has elements of both assurance and

bug hunting, depending on who is running the

testing and at what stage of design. A large number

of companies use formal in this way, including

Infineon, Saab, National Semiconductor, MediaTek,

Brocade, Evatronics and ARM. This use of formal

would be visible as part of the verification process

(most likely, for credit) in a DO-254 project.

•	 Black-box (or Grey-box) Testing			

This method is predominantly an assurance

approach, where there is a formal test plan that

identifies the properties that will be verified, and

the goal is exhaustive proof attainment. A verifi-

cation engineer (and typically one that is experi-

enced in formal methods) will be the main person

running formal model checking in this way.	

						

SIEMENS DIGITAL INDUSTRIES SOFTWARE   20

White Paper – Understanding formal methods for use in DO-254 Programs

Companies known to use this approach include DE

Shaw, SLE, nVidia, AMD, IBM, ST and Infineon.

This use of formal would be visible as part of the

verification process (definitely for credit) in a

DO-254 project.

•	 Coverage Analysis				

In some cases, it can be very difficult to set up all

the conditions to stimulate a design and examine

the response – especially in test complex circuitry.

When these situations are known, then formal is a

good alternative to simulation to verify these

parts of the design. Typically, it is the verification

team who understands this and opts for this use

model of formal to augment and assist in closing

the coverage holes of simulation. Formal can

generate simulation scenarios that can be

captured and used as tests in the simulation test

suite. Companies that use formal in this way

include Sun (formerly), Tensilica, Alcatel-Lucent,

Azul, MetaRam, AMD and Hewlett-Packard. This

use of formal would be visible as part of the

verification process (most likely, for credit) in a

DO-254 project.

•	 Post-silicon debug				

Formal can also be used late in the process to

assist in silicon debug. When bugs are found in

the lab, they can be extremely difficult and

time-consuming to debug. 			

However, it can sometimes be fairly easy to write

an assertion to mimic the behavior seen in the lab

and then run formal verification to flag what is

causing it. Either the designer or verification

engineer may become involved to write the asser-

tion and debug the RTL design. At Siemens EDA,

we know that a number of companies use formal

in this way, but most do not want to publicly

acknowledge it (since having bugs escape verifica-

tion and not be caught until silicon is not the ideal

situation). This use of formal would likely not be

visible and not used for verification credit in a

DO-254 project.

Where to use and not use formal
It was once thought that formal would replace

simulation. After years of pushing this message and

learning where formal was strong and where it was

weak, the industry (and most commercial tool

vendors) now concede that formal methods have

strengths and weaknesses in terms of where they

should be used.

A key paper that identified these suggested areas in

which to use or not use formal methods was

“Guidelines for creating a formal verification test-

plan,” by Harry Foster, Lawrence Loh, Bahman Rabii,

and Vigyan Singhal at DVCon 2006.

What follows is a summary of the ideas presented in

this paper.

When and where to use formal methods:
Control or datapath circuitry with high concurrency

(and no data transformations)

•	 Arbiters

•	 On-chip bus bridges

•	 Power management units

•	 DMA, interrupt, memory controllers

•	 Bus interfaces

•	 Schedulers

•	 Standard interfaces

When and where to avoid formal methods:
Datapaths with data transformations

•	 Floating point units

•	 MPEG decoder

•	 Convolution unit in DSP

•	 Graphics shading unit

In general, formal model checking works best on

control circuitry, datapath circuitry (unless it

involves data transformations), and circuitry with

complexity due to concurrency. These are areas that

are particularly difficult to write tests for simulation.

SIEMENS DIGITAL INDUSTRIES SOFTWARE   21

White Paper – Understanding formal methods for use in DO-254 Programs

These types of circuits also tend to harbor complex,

corner-case behaviors. Formal is especially useful in

these situations.

On the other hand, formal is not good in dealing

with circuitry that is “often sequential in nature” or

“potentially involves some type of data transforma-

tion” such as floating point units and MPEG

decoders.

Formal in software vs. hardware
Many people confuse the formal methods for 	

hardware with formal methods for software. This is

understandable. The principles are identical. What

differs is in the practical application.

Using formal methods in software is more chal-

lenging and less practical than in hardware for

several reasons.

First, the software side offers no “formal friendly”

coding standards. On the contrary, in hardware the

industry has been forced to come out with standard

ways of writing VHDL (Verilog and SystemVerilog)

code that must be followed for synthesis. 		

This same subset of these languages (referred to as

RTL coding) is not only formal friendly, but it is the

way that people have to design to use other tools in

the flow. Thus, the same design model developed 	

in “Detailed Design” and simulated can be used for

formal. In the software domain, typically a whole

new model is created and then this model has to 	

be verified against the “real” model, just adding 	

woe to the design process.

Second, in hardware we are dealing with simpler

static models (finite state machines) while software

must deal with dynamic structures and more

complex infinite state models.

Software can expand and contract on-the-fly,

creating new structures that require verification

within the scope of their parent process. Hardware,

by its very nature, is a fixed number of transistors

connected in a fixed manner. As a result, the hard-

ware being verified is fixed and static, and the

application of formal verification is greatly

simplified.

Finally, formal methods have been used to some

extent on hardware for 30+ years. The algorithms 	

to do the mathematical analysis of the hardware

models are well understood, and today’s tools

contain many self-checks within them.

Thankfully, formal methods in hardware is an easier

problem to solve and a much more practical meth-

odology to employ than in the software domain.

Still, despite these challenges on the software side,

the value of formal methods is understood well

enough that some government programs are now

requiring secure software applications to be

formally verified. Similarly, Microsoft formally

verifies all its device drivers3. Also, some of the

higher-level systems design analysis tools (such as

Mathworks4) commonly use formal analysis in the

verification of their models. This is common practice

and in fact many DO-254 projects use Mathworks as

the front-end of their design flows, so knowingly or

not, they are likely using formal methods.

SIEMENS DIGITAL INDUSTRIES SOFTWARE   22

White Paper – Understanding formal methods for use in DO-254 Programs

Misconceptions and objections
This paper should have cleared up the vast majority

of these misconceptions. However, to summarize,

here are a number of the common misconceptions

and objections to the use of formal methods for

DO-254 programs.

•	 Formal replaces simulation (a proven method)	

On the contrary, in nearly all applicants, formal

compliments simulation. Only in very rare circum-

stances would it replace simulation entirely.

•	 You have to use formal on all properties		

You can use formal on any properties you want,

some or all. We recommend that formal be used

on the most critical properties and/or those that

are difficult to fully verify using simulation.

•	 Formal algorithms are not well understood and

can’t be trusted					

Most people don’t understand simulator algo-

rithms either, and yet, simulation is widely used

and accepted.

•	 Since they can’t be understood, Formal tools must

be qualified					

Formal tools could be qualified if that’s what the

applicant chooses. However, the usage model is

generally such that other verification at other

stages of design will certainly catch any issues

possibly missed by formal. Also, it is possible to

have a flow where formal and simulation directly

double-check each other.

•	 If designers create assertions, this violates inde-

pendence				

Assertions state what needs to be verified, not

who or how it is to be verified. Independence can

be achieved via review or by someone else actu-

ally running and reviewing the results of verifica-

tion. Assertions that map to functional

requirements should be reviewed alongside these

requirements by the team validating the require-

ments. If a designer creates additional structural

assertions that are reused in verification, someone

else runs this verification and checks the results.

•	 With formal, you have to create a whole new

model and that model must be verified This is not

true. The formal model IS the VHDL (or Verilog or

SV) design with no modification. This is the same

as simulation.

Recommendations
•	 ALLOW applicants to use “Formal Methods” for

DO-254 projects			

Hopefully it is now obvious that “Formal Methods”

definitely has a place verifying DO-254 Level A/B

designs.

•	 Avoid tools that encourage a user to guide the

tool toward a proof				

This is mainly intended to ensure caution when

applicants select a commercial tool. Some tools

encourage an extreme amount of user interven-

tion. This will make repeatable results more

difficult to achieve and increase the possibility of

user error.

•	 Before running model checking (for credit)

	○Decide up-front where formal will be used, and

why

	○Requirements & associated properties should be

reviewed (this includes properties used as

constraints)

	○ “sanity check” properties in functional simula-

tion, paying special attention to constraints

•	 During model checking tool usage

	○Re-run formal after design or property changes

	○Be mindful of the “starting state” (typically reset)

	○Use as few constraints as possible

	○Note: The best proofs are obtained without

constraints, but this may be unrealistic

•	 During certification, use the Formal Verification

Checklist presented earlier in this paper

SIEMENS DIGITAL INDUSTRIES SOFTWARE   23

White Paper – Understanding formal methods for use in DO-254 Programs

Formal methods offer a very powerful verification

technique that can go a long way towards improving

design assurance. Unfortunately, the description of

formal methods included in the DO-254 document

serves to confuse rather than clarify how and when

formal methods should be used in the context of a

DO-254 project. This has not served the DO-254

community well as it has both discouraged appli-

cants from its use for fear of the certification

process and confused certification authorities who

do not understand how or why it can be used and

therefore are likely to discourage its use.

This paper clarified the content of DO-254 Appendix

B, providing both applicants and certification

authorities with understandable information

regarding formal methods operation, usage, and

usefulness. It described the value of formal and its

support of design assurance. It discussed industry

use of formal, citing recent industry studies and

articles, and elaborated on some of today’s usage

models for formal model checking. And finally, this

paper offered encouragement about the promise of

using formal methods to improve the quality of

DO-254 compliant designs.

Conclusion

SIEMENS DIGITAL INDUSTRIES SOFTWARE   24

White Paper – Understanding formal methods for use in DO-254 Programs

About Siemens Digital Industries Software

Siemens Digital Industries Software is driving transformation to

enable a digital enterprise where engineering, manufacturing

and electronics design meet tomorrow. Xcelerator, the compre-

hensive and integrated portfolio of software and services from

Siemens Digital Industries Software, helps companies of all sizes

create and leverage a comprehensive digital twin that provides

organizations with new insights, opportunities and levels of

automation to drive innovation. For more information on

Siemens Digital Industries Software products and services, visit

siemens.com/software or follow us on LinkedIn, Twitter,

Facebook and Instagram. Siemens Digital Industries Software –

Where today meets tomorrow.

siemens.com/software
© 2021 Siemens. A list of relevant Siemens trademarks can
be found here. Other trademarks belong to their respective
owners.

83783-D3 7/21 K-TGB

Siemens Digital Industries Software

Americas: 1 800 498 5351

EMEA: 00 800 70002222

Asia-Pacific: 001 800 03061910

For additional numbers, click here.

