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The rise and fall of synthesis
bugs in safety-critical FPGAs
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Executive summary

FPGAs are the dominant hardware platform in low-volume, safety-critical applications, including aerospace
and nuclear power plants. Modern FPGAs allow for the implementation of high-performance designs with
integrated safety mechanisms. This is driving adoption in additional industries, including automotive.
Functional safety standards require a rigorous development process to minimize the risk of introducing
systematic faults. Some RTL issues may only reveal themselves as bugs in the post-synthesis netlist.
Additionally, synthesis tools manipulate the design to map it into the fixed FPGA structure. These complex
transformations present a high risk of introducing bugs.

Gate-level simulation and lab testing can only cover a tiny portion of the FPGA functionality and are likely to
miss implementation bugs. Moreover, they are slow to run and hard to debug.

This paper presents an implementation signoff flow proving that the final FPGA netlist is functionally
equivalent to the RTL model. Based on FPGA-specific, mature formal technology, the solution is exhaustive
and efficient, with many issues being caught before synthesis starts.
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| Safety-critical FPGAs

Field-programmable gate arrays (FPGAs) are the
dominant hardware platform in many safety- crit-
ical, low-volume applications, including aerospace
and nuclear power plants (NPPs). Modern FPGA
devices feature integrated microprocessor cores,
digital signal processing (DSP) units, memory blocks
and other specialized intellectual properties (IPs).
These advanced devices allow for the implementa-
tion of large, high-performance system-on-chip
(SoC) designs with integrated safety mechanisms,
making a strong case for adoption in additional
safety-critical applications traditionally dominated
by application-specific integrated circuits (ASICs). A
notable example is automotive hardware for Al,
which, driven by the challenges of autonomous
vehicles, must serve the demands of an expanding
range of applications, including sensor data fusion
and processing.

At a high-level, the FPGA and ASIC development
flows are similar. Register- transfer level (RTL)
coding and integration of third-party intellectual
properties (IPs) are crucial steps in the front-end
part of the flow. Extensive functional verification of
the RTL design model reduces the risk of
mismatches between requirements and RTL
behavior. At this stage, specification, coding, and
module integration mistakes are the main source of
systematic faults that, if undetected, could lead to
dangerous failures of the FPGA device in the field.

The RTL model then goes through several imple-
mentation steps (see figure 1). Synthesis and place-
and-route tools map the design onto the target
FPGA device. The bitstream generation step
produces the file used to program the FPGA.
Functional verification of implementation steps, the
focus of this paper, reduces the risk of mismatches
between the derived netlists and the RTL design
model. This is crucial to close the loop and ensure
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that the functionality implemented in the FPGA
device matches the hardware requirements.
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Figure 1. The FPGA development flow.
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The 2016 Wilson Research Group Functional
Verification Study (see figure 2) shows that for a
significant number of FPGA projects one or more
bugs escape into production devices. The same
study also reports that 78% of safety-critical FPGA
designs have bug escapes into production.
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Figure 2. Non-trivial bug escapes in FPGA production devices.

FPGA implementation bugs reported on industrial
projects include incorrect FSM re-encoding, wrong
bit ordering in bus connections, incorrect settings
for RAM parameters, routing issues, and introduction
of additional, unspecified logic as well as retiming.
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Besides the cost advantages of FPGAs over ASICs for
low-volume applications, another crucial benefit of
FPGAs is that if, for whatever reason, the final
hardware function needs to be changed, the whole
flow can be repeated, and a new bitstream gener-
ated to re-program the same device without the
large non-recurring engineering (NRE) and fabrica-
tion delay costs of ASICs. However, shipping FPGAs
with functional bugs is not acceptable, particularly
in safety-critical applications.

Functional bugs can be introduced during imple-
mentation steps, either because of RTL issues that
cannot be detected during synthesis, or because of
malfunctions in implementation tools, particularly
synthesis and place-and-route, corrupting the orig-
inal RTL functionality. While engineers may expect
that implementation tools have been extensively
tested prior to release, each design and coding style
is unique and may trigger unknown corner cases.

Simulation-synthesis mismatches

Regardless of the implementation tool used, there
are coding issues that may go undetected during
RTL verification and creep into the synthesis netlist.
As an example, consider a Verilog array indexed
with a signal that may take values outside the
bounds of the array (see figure 3). Indexing an array
signal outside of its bounds creates an “X" during
simulation. In some corner case scenarios, RTL
simulation behavior may not match the behavior of
the corresponding netlist in the presence of
unknown, or X, values. Consequently, while the
synthesis tool operates correctly, its generated

netlist may still not match the intended RTL behavior.
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This paper presents an efficient, rigorous verifica-
tion signoff flow that detects functional bugs intro-
duced during FPGA implementation.

Implementation issues in
FPGA flows

reg [2:0] i;
reg [5:0] array;
always @ (posedge clk)
for(i=0 ; i<=M; 1=i+1)
array[i] <= 1;

Figure 3. Potential array indexing issue.

Requirement-based testing does not explicitly target
these type of corner cases, which can therefore be
missed. RTL linting tools may warn about these
scenarios. However, they provide neither a definite
answer nor a simulation trace that shows how the
bad scenarios may occur. While valuable, linting
tools give little help with debug and, particularly for
these types of issues, raise many false alarms and
tend to be noisy.
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Implementation optimizations

Unlike in ASIC, FPGA implementation tools do not
have a white silicon canvas on which to “draw” the
RTL design. Instead, they must fit the desired func-
tionality into a prefabricated structure while
meeting performance and power consumption
goals. Implementation tools perform significant
changes to the original logic structure of the design
to improve device utilization and overall quality of
results (QoR). Design transformations range from
simple renaming of registers to complex retiming
(see figure 4). Advanced optimizations pose a
higher risk of corrupting the RTL functionality.

Configurable logic blocks (CLBs) contain registers
and lookup tables (LUTs) and are fundamental
building blocks in the FPGA fabric. The CLB elements
are connected through a programmable switch
matrix. The logical function implemented by a LUT
depends on how it is instantiated and parametrized
within the synthesis netlist. Incorrected parametriza-
tion of a LUT corrupts the intended logical function.

FPGAs also contain distributed and block random-ac-
cess memories (RAMs). Synthesis tools use RAMs to
optimize the data path and improve timing. Even for
a simple RTL array, advanced algorithms are
employed to identify the best choice of memory

elements. Moreover, large memories may need to
be mapped into smaller FPGA RAMs, which individu-
ally do not have the word width or addressability
required by the RTL design. This results in compli-
cated correspondences between the RTL and the
synthesis netlist.

The encoding of FSMs states in the RTL design may
also be transformed during synthesis to optimize
power, timing, and device utilization. Synthesis
tools feature multiple re-encoding algorithm that
may perform optimizations that cross hierarchies
and even alter the overall number of states in the
FSM representation.

Certain design styles of shift registers (SR) may
result in the conversion of the SR chain to a memory
block with intelligently modelled control logic to
produce an equivalent behavior. Successive shifting
of the input data in the RTL registers is transformed
to write operations to distinct memory locations in
the netlist. While this transformation smartly utilizes
the available FPGA resources, it also places a great
deal of responsibility on the synthesis tool.

Retiming is another commonly employed optimiza-
tion technique. Its main goal is to improve timing
and increase the clock frequency at which the FPGA
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Figure 4. Complexity of FPGA implementation optimizations.
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may operate. As logic functions are moved across
register stages, retiming is also a high-risk design
transformation.

Depending on the target FPGA family and imple-
mentation flow, design optimizations may be
performed during synthesis, initial place-and-route
or even after initial routing, for example to enable
retiming algorithms to leverage more accurate
estimates of connection delays.

Insertion of safety mechanisms

Certain FPGA synthesis tools support the automatic
insertion of hardware safety mechanisms. Safety
mechanisms do not change the design functionality
when no fault is present. In the event of a random
hardware fault occurring during field operation,
they need to raise an alarm and potentially correct
the effects of the fault on the fly.

Synthesis tools may transform the encoding of
FSMs, for example to include Hamming-based error
detection and correction. Triple modular redundancy
(TMR) is another type of safety mechanism where a
critical logic function is triplicated and voting logic
added to determine which of the three outputs
should be considered as correct. Logic duplication
and inference of memories with error correcting
codes (ECC) may also be supported. Users certainly
benefit significantly from these design enhance-
ments that can be performed automatically by the
synthesis tool. However, the inserted logic could
contain bugs and must be rigorously verified.
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Traditional verification of implementation steps
Extensive gate-level simulation (GLS) and lab testing
may detect functional bugs introduced during
implementation steps. However, these techniques
have significant shortcomings. An effective verifica-
tion flow must detect bugs as soon as possible once
they are introduced: the later a bug is found the
higher its cost. Detecting an RTL issue or synthesis
bug during lab testing or GLS of the place-and-route
netlist is inefficient. Moreover, the effect of bugs
introduced by implementation tools is unpredict-
able. Simulation tests are not intended to verify the
correctness of the implementation tools, and even
running all available tests at gate-level, which is in
fact impractical in most cases, only provides limited
confidence. This approach cannot be - and is indeed
far from - exhaustive. Finally, debugging GLS and
lab test failures is hard and time consuming.

To reduce the risk of introducing errors, some engi-
neers switch off advanced synthesis optimizations
options and avoid using the latest tool versions. This
approach is inefficient and inadequate for many
modern designs. Moreover, it reveals an overall lack
of confidence in the verification flow.

RTL coding issues and advanced optimizations
during FPGA implementation increase the risk of
introducing bugs. GLS and lab testing are late, slow,
and miss corner-cases. Is there a better solution?
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Formal signoff of FPGA
implementation

Formal methods are widely recognized as a
powerful verification technology. Unlike simulators,
formal tools do not need input vectors and perform
an exhaustive analysis of the design, covering all
possible hardware behaviors and states. The use of
formal tools is well established in ASIC develop-
ment. Formal design inspection and exploration is
valued for detecting both basic and corner-case RTL
issues early and without the need for a simulation
testbench. Moreover, driven by high NRE and fabri-
cation delay costs, for nearly 20 years ASIC develop-
ment teams have routinely applied formal
combinational equivalence checking (EC) as a
superior alternative to GLS to ensure that no func-
tional bugs are introduced during synthesis, place-
and-route, and engineering change orders (ECOs).

Inspection of RTL code

Automated, formal inspection of RTL code detects
issues before synthesis starts. Unlike linting, formal
tools provide a definite answer on whether an array
may be indexed out of bounds. In this case, the

tool provides an easy-to-debug simulation-like trace,
or counterexample, that demonstrates how the
design misbehaves.

DV-Inspect™ from Siemens EDA, a part of Siemens
Digital Industries Software, performs numerous
checks on the RTL design in addition to array out-of-
bounds checks (see figure 5). The tool automatically
creates assertions and verifies those assertions
using formal proof engines. Many of the issues
detected could result in simulation- synthesis
mismatches or other issues that compromise the
functionality of the synthesis netlist.
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Automated formal RTL checks
(prior to synthesis)
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Figure 5. Automated formal RTL checks prior to synthesis.

DV-Inspect has been used in hundreds of large
industry designs, including safety-critical FPGAs.
Many DV-Inspect users had no previous experience
with formal tools.

Equivalence checking for FPGAs

Formal EC tools can mathematically prove (or
disprove) that two designs are functionally equiva-
lent. This is the most rigorous way to ensure that
synthesis and other implementation steps have not
introduced bugs. The input design to the implemen-
tation tool is typically named golden design. The
generated netlist is named revised design.

Combinational EC largely relies on one-to-one
mapping of states between golden (e.g., the RTL)
and revised (e.g., post-synthesis netlist) designs.
Through state mapping, the complex problem of
proving that two large designs are functionally
equivalent can be split into a multitude of much
simpler problems: comparing the functionality of
two combinational logic cones (see figure 6).

The design transformations performed by FPGA
implementation tools significantly break one- to-one
state mapping. Formal sequential EC algorithms can
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Figure 6. Proof obligation in combinational equivalence checking.

prove equivalence of sequential logic cones, thus

not requiring state mapping. However, while these

algorithms have improved dramatically in recent

years, they do not scale. Partial state mapping is

necessary to leverage combinational EC wherever

possible and apply sequential algorithms only on

limited design portions (see figure 7). In this

context, identifying corresponding states is a

crucial, challenging task. Manual mapping is

tedious and time-consuming. Mistakes waste

engineering resources.
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Figure 7. Proof obligation in sequential and combinational equivalence checking.

EC-FPGA™ performs automated, accurate mapping

through a variety of techniques, including name-

based mapping algorithms, hint-based algorithms
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leveraging information provided by synthesis tools,
for example on state re-encoding, and algorithms
that leverage known behavior of implementation
tools for the specific FPGA target device. Advanced
design transformations, including FSM re-encoding
and retiming, are made more amenable to formal EC
through specialized mapping algorithms that iden-
tify high-level relations between sets of golden and
revised states. Finally, FPGA-specific sequential
proof engines cover the areas where no mapping
exists or can be found.

Thanks to these advanced algorithms, Siemens EDA
brings the power of automated formal EC to FPGA
designs. To achieve further device-specific automa-
tion and high performances, Siemens leverages
close partnerships with leading FPGA vendors:
Xilinx, Intel, and Microsemi. However, EC-FPGA
works independently from implementation tools.
The use of hint files and other similar approaches is
conservative in the sense that the information is
used but not trusted to be correct.

Verification of safety mechanisms

Safety mechanism inserted by synthesis tools must
be rigorously verified. EC- FPGA automatically
handles the crucial no-fault scenario, and exhaus-
tively proves that the additional logic does not
change the RTL functionality when no random
hardware fault is present. In addition, engineers
must verify that the safety mechanism functions as
expected when faults occur. The Siemens EDA
platform supports fault injection and verification
through a portfolio of safety analysis and verifica-
tion apps. The level of verification automation
depends on the type of safety mechanism. For

a logic duplication mechanism, for example, the
injection of faults and verification of the output’s
comparator logic can be fully automated through
the Fault Detection Analysis (FDA™) App.
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Formal signoff flow the verification of safety mechanisms in the
Formal verification signoff (see figure 8) enables scenarios when faults occur.

engineers to use advanced FPGA optimizations and . . .
. . ] With this flow, weeks of GLS and lab testing can be
the latest synthesis technology with confidence. . . )
o T replaced with hours of formal tool runtime. Siemens
Formal RTL design inspection is more powerful than
L . . . . EDA tools share a common platform, do not need a
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Formal EC proves that the golden design function- L .
o . . set up. Debugging is also much faster as issues are
ality is not corrupted by the implementation step. . . .
. o . detected early in the flow, the portion of the design
Finally, formal fault injection and verification, o ] ] . )
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Figure 8. Functional signoff of FPGA implementation with formal verification.
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Compliance with functional
safety standards

Functional safety standards such as DO-254 for
aerospace applications, IEC 61508, and its deriva-
tives, including ISO 26262 for automotive applica-
tions, require rigorous hardware development
processes that minimize the risk of systematic faults.
Engineers must also demonstrate an adequate level
of confidence in the use of software tools that tailor
or replace activities required by the standard.
Although verification tools may not introduce errors
in the design flow, they may fail to detect errors and
are also covered by these requirements.

Tool safety compliance is a project-specific task.
However, vendors can provide safety certificates and
standard-specific qualification kits that take most of
the burden of safety compliance off the shoulders of
users. In this context, safety compliance support is
an integral aspect of state-of-the-art formal verifi-
cation tools.

Siemens TUV SUD certification

EC-FPGA has tool qualification kits (TQKs) that
enable users to meet the tool safety requirements of
ISO 26262, IEC 61508 and EN 50128, without addi-
tional qualification effort, for up to ASIL D (ISO
262626 TCL2 and TCL3 tools) and SIL3 (IEC 61508
and EN 50128 T2 off-line tools) applications.

Siemens EDA engaged with TUV SUD, an accredited
global testing, inspection, and certification provider,
to perform a thorough, independent assessment of
its organization, tool development and testing
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processes, as well as an inspection of its develop-
ment facilities. The TUV SUD safety certificate
and report form the basis of Siemens EDA’s TQKs.
Each TQK also includes tool documentation, a
safety manual, and a system to track defects and
notify users of newly found tool issues that might
impact safety.

Siemens EDA DO-254 tool qualification kit
DO-254 provides guidance with a require-
ments-based process-oriented approach that signifi-
cantly increases project lifecycle compared to a
non-DO-254 compliant flow. The standard requires
the assessment and, if necessary, qualification of
software tools. Design tools, for example for
synthesis, can introduce errors in the hardware.
Verification tools, on the other hand, can fail to
detect errors. The standard demands are more

stringent for design tools.

The Siemens EDA tools used in the FPGA imple-
mentation functional signoff solution presented

in this paper are verification tools. Depending

on the specific use of the tools and project, compli-
ance can be achieved through independent assess-
ment of the tool outputs or through basic tool
qualification. Siemens EDA provides a customiz-
able DO-254 TQK and project-specific support to
enable low-effort compliance with DO-254 tool
qualification requirements.
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| Conclusion

FPGAs have long been the hardware platform of
choice in many low-volume safety-critical applica-
tions. Nowadays, these devices can implement
complex functions while fulfilling tough perfor-
mance and power goals, thus competing with ASICs
on high-volume safety-critical applications,
including automotive.

The availability of advanced EDA tools and method-
ology is crucial to support this trend. ASIC develop-
ment has used formal EC for nearly 20 years.
Automated formal checks prior to synthesis are also
widely adopted by ASIC teams. The same technology
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