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Executive summary
FPGAs are the dominant hardware platform in low-volume, safety-critical applications, including aerospace 
and nuclear power plants. Modern FPGAs allow for the implementation of high-performance designs with 
integrated safety mechanisms. This is driving adoption in additional industries, including automotive.
Functional safety standards require a rigorous development process to minimize the risk of introducing 
systematic faults. Some RTL issues may only reveal themselves as bugs in the post-synthesis netlist. 
Additionally, synthesis tools manipulate the design to map it into the fixed FPGA structure. These complex 
transformations present a high risk of introducing bugs.
Gate-level simulation and lab testing can only cover a tiny portion of the FPGA functionality and are likely to 
miss implementation bugs. Moreover, they are slow to run and hard to debug.
This paper presents an implementation signoff flow proving that the final FPGA netlist is functionally 
equivalent to the RTL model. Based on FPGA-specific, mature formal technology, the solution is exhaustive 
and efficient, with many issues being caught before synthesis starts.
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Field-programmable gate arrays (FPGAs) are the 

dominant hardware platform in many safety- crit-

ical, low-volume applications, including aerospace 

and nuclear power plants (NPPs). Modern FPGA 

devices feature integrated microprocessor cores, 

digital signal processing (DSP) units, memory blocks 

and other specialized intellectual properties (IPs). 

These advanced devices allow for the implementa-

tion of large, high-performance system-on-chip 

(SoC) designs with integrated safety mechanisms, 

making a strong case for adoption in additional 

safety-critical applications traditionally dominated 

by application-specific integrated circuits (ASICs). A 

notable example is automotive hardware for AI, 

which, driven by the challenges of autonomous 

vehicles, must serve the demands of an expanding 

range of applications, including sensor data fusion 

and processing.

At a high-level, the FPGA and ASIC development 

flows are similar. Register- transfer level (RTL) 

coding and integration of third-party intellectual 

properties (IPs) are crucial steps in the front-end 

part of the flow. Extensive functional verification of 

the RTL design model reduces the risk of 

mismatches between requirements and RTL 

behavior. At this stage, specification, coding, and 

module integration mistakes are the main source of 

systematic faults that, if undetected, could lead to 

dangerous failures of the FPGA device in the field.

The RTL model then goes through several imple-

mentation steps (see figure 1). Synthesis and place-

and-route tools map the design onto the target 

FPGA device. The bitstream generation step 

produces the file used to program the FPGA. 

Functional verification of implementation steps, the 

focus of this paper, reduces the risk of mismatches 

between the derived netlists and the RTL design 

model. This is crucial to close the loop and ensure 

that the functionality implemented in the FPGA 

device matches the hardware requirements.

Figure 1. The FPGA development flow.

The 2016 Wilson Research Group Functional 

Verification Study (see figure 2) shows that for a 

significant number of FPGA projects one or more 

bugs escape into production devices. The same 

study also reports that 78% of safety-critical FPGA 

designs have bug escapes into production.

Figure 2. Non-trivial bug escapes in FPGA production devices.

FPGA implementation bugs reported on industrial 

projects include incorrect FSM re-encoding, wrong 

bit ordering in bus connections, incorrect settings 

for RAM parameters, routing issues, and introduction  

of additional, unspecified logic as well as retiming.

Safety-critical FPGAs
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Besides the cost advantages of FPGAs over ASICs for 

low-volume applications, another crucial benefit of 

FPGAs is that if, for whatever reason, the final 

hardware function needs to be changed, the whole 

flow can be repeated, and a new bitstream gener-

ated to re-program the same device without the 

large non-recurring engineering (NRE) and fabrica-

tion delay costs of ASICs. However, shipping FPGAs 

with functional bugs is not acceptable, particularly 

in safety-critical applications.

Functional bugs can be introduced during imple-

mentation steps, either because of RTL issues that 

cannot be detected during synthesis, or because of 

malfunctions in implementation tools, particularly 

synthesis and place-and-route, corrupting the orig-

inal RTL functionality. While engineers may expect 

that implementation tools have been extensively 

tested prior to release, each design and coding style 

is unique and may trigger unknown corner cases.

Simulation-synthesis mismatches

Regardless of the implementation tool used, there 

are coding issues that may go undetected during 

RTL verification and creep into the synthesis netlist. 

As an example, consider a Verilog array indexed 

with a signal that may take values outside the 

bounds of the array (see figure 3). Indexing an array 

signal outside of its bounds creates an “X” during 

simulation. In some corner case scenarios, RTL 

simulation behavior may not match the behavior of 

the corresponding netlist in the presence of 

unknown, or X, values. Consequently, while the 

synthesis tool operates correctly, its generated 

netlist may still not match the intended RTL behavior.

This paper presents an efficient, rigorous verifica-

tion signoff flow that detects functional bugs intro-

duced during FPGA implementation.

Implementation issues in 
FPGA flows

Requirement-based testing does not explicitly target 

these type of corner cases, which can therefore be 

missed. RTL linting tools may warn about these 

scenarios. However, they provide neither a definite 

answer nor a simulation trace that shows how the 

bad scenarios may occur. While valuable, linting 

tools give little help with debug and, particularly for 

these types of issues, raise many false alarms and 

tend to be noisy.

Figure 3. Potential array indexing issue.
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Implementation optimizations

Unlike in ASIC, FPGA implementation tools do not 

have a white silicon canvas on which to “draw” the 

RTL design. Instead, they must fit the desired func-

tionality into a prefabricated structure while 

meeting performance and power consumption 

goals. Implementation tools perform significant 

changes to the original logic structure of the design 

to improve device utilization and overall quality of 

results (QoR). Design transformations range from 

simple renaming of registers to complex retiming 

(see figure 4). Advanced optimizations pose a 

higher risk of corrupting the RTL functionality.

Configurable logic blocks (CLBs) contain registers 

and lookup tables (LUTs) and are fundamental 

building blocks in the FPGA fabric. The CLB elements 

are connected through a programmable switch 

matrix. The logical function implemented by a LUT 

depends on how it is instantiated and parametrized 

within the synthesis netlist. Incorrected parametriza- 

tion of a LUT corrupts the intended logical function.

FPGAs also contain distributed and block random-ac-

cess memories (RAMs). Synthesis tools use RAMs to 

optimize the data path and improve timing. Even for 

a simple RTL array, advanced algorithms are 

employed to identify the best choice of memory 

elements. Moreover, large memories may need to 

be mapped into smaller FPGA RAMs, which individu-

ally do not have the word width or addressability 

required by the RTL design. This results in compli-

cated correspondences between the RTL and the 

synthesis netlist.

The encoding of FSMs states in the RTL design may 

also be transformed during synthesis to optimize 

power, timing, and device utilization. Synthesis 

tools feature multiple re-encoding algorithm that 

may perform optimizations that cross hierarchies 

and even alter the overall number of states in the 

FSM representation.

Certain design styles of shift registers (SR) may 

result in the conversion of the SR chain to a memory 

block with intelligently modelled control logic to 

produce an equivalent behavior. Successive shifting 

of the input data in the RTL registers is transformed 

to write operations to distinct memory locations in 

the netlist. While this transformation smartly utilizes 

the available FPGA resources, it also places a great 

deal of responsibility on the synthesis tool.

Retiming is another commonly employed optimiza-

tion technique. Its main goal is to improve timing 

and increase the clock frequency at which the FPGA 

Figure 4. Complexity of FPGA implementation optimizations.
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may operate. As logic functions are moved across 

register stages, retiming is also a high-risk design 

transformation.

Depending on the target FPGA family and imple-

mentation flow, design optimizations may be 

performed during synthesis, initial place-and-route 

or even after initial routing, for example to enable 

retiming algorithms to leverage more accurate 

estimates of connection delays.

Insertion of safety mechanisms

Certain FPGA synthesis tools support the automatic 

insertion of hardware safety mechanisms. Safety 

mechanisms do not change the design functionality 

when no fault is present. In the event of a random 

hardware fault occurring during field operation, 

they need to raise an alarm and potentially correct 

the effects of the fault on the fly.

Synthesis tools may transform the encoding of 

FSMs, for example to include Hamming-based error 

detection and correction. Triple modular redundancy 

(TMR) is another type of safety mechanism where a 

critical logic function is triplicated and voting logic 

added to determine which of the three outputs 

should be considered as correct. Logic duplication 

and inference of memories with error correcting 

codes (ECC) may also be supported. Users certainly 

benefit significantly from these design enhance-

ments that can be performed automatically by the 

synthesis tool. However, the inserted logic could 

contain bugs and must be rigorously verified.

Traditional verification of implementation steps

Extensive gate-level simulation (GLS) and lab testing 

may detect functional bugs introduced during 

implementation steps. However, these techniques 

have significant shortcomings. An effective verifica-

tion flow must detect bugs as soon as possible once 

they are introduced: the later a bug is found the 

higher its cost. Detecting an RTL issue or synthesis 

bug during lab testing or GLS of the place-and-route 

netlist is inefficient. Moreover, the effect of bugs 

introduced by implementation tools is unpredict-

able. Simulation tests are not intended to verify the 

correctness of the implementation tools, and even 

running all available tests at gate-level, which is in 

fact impractical in most cases, only provides limited 

confidence. This approach cannot be - and is indeed 

far from - exhaustive. Finally, debugging GLS and 

lab test failures is hard and time consuming.

To reduce the risk of introducing errors, some engi-

neers switch off advanced synthesis optimizations 

options and avoid using the latest tool versions. This 

approach is inefficient and inadequate for many 

modern designs. Moreover, it reveals an overall lack 

of confidence in the verification flow.

RTL coding issues and advanced optimizations 

during FPGA implementation increase the risk of 

introducing bugs. GLS and lab testing are late, slow, 

and miss corner-cases. Is there a better solution?
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Formal signoff of FPGA 
implementation

Formal methods are widely recognized as a 

powerful verification technology. Unlike simulators, 

formal tools do not need input vectors and perform 

an exhaustive analysis of the design, covering all 

possible hardware behaviors and states. The use of 

formal tools is well established in ASIC develop-

ment. Formal design inspection and exploration is 

valued for detecting both basic and corner-case RTL 

issues early and without the need for a simulation 

testbench. Moreover, driven by high NRE and fabri-

cation delay costs, for nearly 20 years ASIC develop-

ment teams have routinely applied formal 

combinational equivalence checking (EC) as a 

superior alternative to GLS to ensure that no func-

tional bugs are introduced during synthesis, place-

and-route, and engineering change orders (ECOs).

Inspection of RTL code

Automated, formal inspection of RTL code detects 

issues before synthesis starts. Unlike linting, formal 

tools provide a definite answer on whether an array 

may be indexed out of bounds. In this case, the  

tool provides an easy-to-debug simulation-like trace, 

or counterexample, that demonstrates how the 

design misbehaves.

DV-Inspect™ from Siemens EDA, a part of Siemens 

Digital Industries Software, performs numerous 

checks on the RTL design in addition to array out-of-

bounds checks (see figure 5). The tool automatically 

creates assertions and verifies those assertions 

using formal proof engines. Many of the issues 

detected could result in simulation- synthesis 

mismatches or other issues that compromise the 

functionality of the synthesis netlist.

Automated formal RTL checks 
(prior to synthesis)

Array/Range out  
of bound

SNPS full case
Negative/Zero 
division, expo-
nent, reminder

Function without 
return

SNPS parallel 
case

X/Z signal/
variable 

resolution

X/Z state value Write-write case Arithmetic shifts

Figure 5. Automated formal RTL checks prior to synthesis.

DV-Inspect has been used in hundreds of large 

industry designs, including safety-critical FPGAs. 

Many DV-Inspect users had no previous experience 

with formal tools.

Equivalence checking for FPGAs

Formal EC tools can mathematically prove (or 

disprove) that two designs are functionally equiva-

lent. This is the most rigorous way to ensure that 

synthesis and other implementation steps have not 

introduced bugs. The input design to the implemen-

tation tool is typically named golden design. The 

generated netlist is named revised design.

Combinational EC largely relies on one-to-one 

mapping of states between golden (e.g., the RTL) 

and revised (e.g., post-synthesis netlist) designs. 

Through state mapping, the complex problem of 

proving that two large designs are functionally 

equivalent can be split into a multitude of much 

simpler problems: comparing the functionality of 

two combinational logic cones (see figure 6).

The design transformations performed by FPGA 

implementation tools significantly break one- to-one 

state mapping. Formal sequential EC algorithms can 
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prove equivalence of sequential logic cones, thus 

not requiring state mapping. However, while these 

algorithms have improved dramatically in recent 

years, they do not scale. Partial state mapping is 

necessary to leverage combinational EC wherever 

possible and apply sequential algorithms only on 

limited design portions (see figure 7). In this 

context, identifying corresponding states is a 

crucial, challenging task. Manual mapping is  

tedious and time-consuming. Mistakes waste  

engineering resources.

Figure 7. Proof obligation in sequential and combinational equivalence checking.

EC-FPGA™ performs automated, accurate mapping 

through a variety of techniques, including name-

based mapping algorithms, hint-based algorithms 

leveraging information provided by synthesis tools, 

for example on state re-encoding, and algorithms 

that leverage known behavior of implementation 

tools for the specific FPGA target device. Advanced 

design transformations, including FSM re-encoding 

and retiming, are made more amenable to formal EC 

through specialized mapping algorithms that iden-

tify high-level relations between sets of golden and 

revised states. Finally, FPGA-specific sequential 

proof engines cover the areas where no mapping 

exists or can be found.

Thanks to these advanced algorithms, Siemens EDA 

brings the power of automated formal EC to FPGA 

designs. To achieve further device-specific automa-

tion and high performances, Siemens leverages 

close partnerships with leading FPGA vendors: 

Xilinx, Intel, and Microsemi. However, EC-FPGA 

works independently from implementation tools. 

The use of hint files and other similar approaches is 

conservative in the sense that the information is 

used but not trusted to be correct.

Verification of safety mechanisms

Safety mechanism inserted by synthesis tools must 

be rigorously verified. EC- FPGA automatically 

handles the crucial no-fault scenario, and exhaus-

tively proves that the additional logic does not 

change the RTL functionality when no random 

hardware fault is present. In addition, engineers 

must verify that the safety mechanism functions as 

expected when faults occur. The Siemens EDA 

platform supports fault injection and verification 

through a portfolio of safety analysis and verifica-

tion apps. The level of verification automation 

depends on the type of safety mechanism. For  

a logic duplication mechanism, for example, the 

injection of faults and verification of the output’s 

comparator logic can be fully automated through 

the Fault Detection Analysis (FDA™) App.

Figure 6. Proof obligation in combinational equivalence checking.
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Figure 8. Functional signoff of FPGA implementation with formal verification.

Formal signoff flow

Formal verification signoff (see figure 8) enables 

engineers to use advanced FPGA optimizations and 

the latest synthesis technology with confidence. 

Formal RTL design inspection is more powerful than 

linting and finds issues early, prior to synthesis. 

Formal EC proves that the golden design function-

ality is not corrupted by the implementation step. 

Finally, formal fault injection and verification, 

supported by specialized safety apps, can automate 

the verification of safety mechanisms in the 

scenarios when faults occur.

With this flow, weeks of GLS and lab testing can be 

replaced with hours of formal tool runtime. Siemens 

EDA tools share a common platform, do not need a 

testbench, and may take as little as a few hours to 

set up. Debugging is also much faster as issues are 

detected early in the flow, the portion of the design 

containing the bug is closely identified, and a simu-

lation-like trace is provided.
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Functional safety standards such as DO-254 for 

aerospace applications, IEC 61508, and its deriva-

tives, including ISO 26262 for automotive applica-

tions, require rigorous hardware development 

processes that minimize the risk of systematic faults. 

Engineers must also demonstrate an adequate level 

of confidence in the use of software tools that tailor 

or replace activities required by the standard. 

Although verification tools may not introduce errors 

in the design flow, they may fail to detect errors and 

are also covered by these requirements.

Tool safety compliance is a project-specific task. 

However, vendors can provide safety certificates and 

standard-specific qualification kits that take most of 

the burden of safety compliance off the shoulders of 

users. In this context, safety compliance support is 

an integral aspect of state-of–the-art formal verifi-

cation tools.

Siemens TÜV SÜD certification

EC-FPGA has tool qualification kits (TQKs) that 

enable users to meet the tool safety requirements of 

ISO 26262, IEC 61508 and EN 50128, without addi-

tional qualification effort, for up to ASIL D (ISO 

262626 TCL2 and TCL3 tools) and SIL3 (IEC 61508 

and EN 50128 T2 off-line tools) applications.

Siemens EDA engaged with TÜV SÜD, an accredited 

global testing, inspection, and certification provider, 

to perform a thorough, independent assessment of 

its organization, tool development and testing 

Compliance with functional 
safety standards

processes, as well as an inspection of its develop-

ment facilities. The TÜV SÜD safety certificate  

and report form the basis of Siemens EDA’s TQKs.  

Each TQK also includes tool documentation, a  

safety manual, and a system to track defects and 

notify users of newly found tool issues that might 

impact safety.

Siemens EDA DO-254 tool qualification kit

DO-254 provides guidance with a require-

ments-based process-oriented approach that signifi-

cantly increases project lifecycle compared to a 

non-DO-254 compliant flow. The standard requires 

the assessment and, if necessary, qualification of 

software tools. Design tools, for example for 

synthesis, can introduce errors in the hardware. 

Verification tools, on the other hand, can fail to 

detect errors. The standard demands are more 

stringent for design tools.

The Siemens EDA tools used in the FPGA imple- 

mentation functional signoff solution presented  

in this paper are verification tools. Depending  

on the specific use of the tools and project, compli-

ance can be achieved through independent assess-

ment of the tool outputs or through basic tool 

qualification. Siemens EDA provides a customiz- 

able DO-254 TQK and project-specific support to 

enable low-effort compliance with DO-254 tool 

qualification requirements.
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FPGAs have long been the hardware platform of 

choice in many low-volume safety-critical applica-

tions. Nowadays, these devices can implement 

complex functions while fulfilling tough perfor-

mance and power goals, thus competing with ASICs 

on high-volume safety-critical applications, 

including automotive.

The availability of advanced EDA tools and method-

ology is crucial to support this trend. ASIC develop-

ment has used formal EC for nearly 20 years. 

Automated formal checks prior to synthesis are also 

widely adopted by ASIC teams. The same technology 

Conclusion

is now available in FPGA development, enabling a 

robust, efficient implementation process. The 

Siemens EDA formal signoff flow of FPGA imple-

mentation is orders of magnitude more rigorous 

and efficient than GLS and lab tests. The technology 

is mature and proven on hundreds of industrial 

designs for communications, NPPs, and other safe-

ty-critical applications. The Siemens EDA tools also 

come with TQKs that enable engineers to satisfy the 

tool safety compliance requirements of various 

functional safety standards, including IEC 61508, 

ISO 26262, EN 50128, and DO-254.
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About Siemens Digital Industries Software

Siemens Digital Industries Software is driving transformation to 

enable a digital enterprise where engineering, manufacturing 

and electronics design meet tomorrow. Xcelerator, the compre-

hensive and integrated portfolio of software and services from 

Siemens Digital Industries Software, helps companies of all sizes 

create and leverage a comprehensive digital twin that provides 

organizations with new insights, opportunities and levels of 

automation to drive innovation. For more information on 

Siemens Digital Industries Software products and services, visit 

siemens.com/software or follow us on LinkedIn, Twitter, 

Facebook and Instagram. Siemens Digital Industries Software –  

Where today meets tomorrow.
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