
DIGITAL INDUSTRIES SOFTWARE

The rise and fall of synthesis
bugs in safety-critical FPGAs

IEC 61508 / ISO 26262 / EN 50128 / DO-254

Executive summary
FPGAs are the dominant hardware platform in low-volume, safety-critical applications, including aerospace
and nuclear power plants. Modern FPGAs allow for the implementation of high-performance designs with
integrated safety mechanisms. This is driving adoption in additional industries, including automotive.
Functional safety standards require a rigorous development process to minimize the risk of introducing
systematic faults. Some RTL issues may only reveal themselves as bugs in the post-synthesis netlist.
Additionally, synthesis tools manipulate the design to map it into the fixed FPGA structure. These complex
transformations present a high risk of introducing bugs.
Gate-level simulation and lab testing can only cover a tiny portion of the FPGA functionality and are likely to
miss implementation bugs. Moreover, they are slow to run and hard to debug.
This paper presents an implementation signoff flow proving that the final FPGA netlist is functionally
equivalent to the RTL model. Based on FPGA-specific, mature formal technology, the solution is exhaustive
and efficient, with many issues being caught before synthesis starts.

Sergio Marchese
Siemens EDA

siemens.com/eda

http://siemens.com/eda

Contents

Safety-critical FPGAs� 3

Implementation issues in FPGA flows� 4

Simulation-synthesis mismatches � 4

Implementation optimizations� 5

Insertion of safety mechanisms� 6

Traditional verification of implementation steps� 6

Formal signoff of FPGA implementation� 7

Inspection of RTL code � 7

Equivalence checking for FPGAs� 7

Verification of safety mechanisms� 8

Formal signoff flow� 9

Compliance with functional safety standards� 10

Siemens TÜV SÜD certification� 10

Siemens EDA DO-254 tool qualification kit� 10

Conclusion� 11

References and further reading� 11

Siemens Digital Industries Software   2

White Paper – The rise and fall of synthesis bugs in safety-critical FPGAs

Field-programmable gate arrays (FPGAs) are the

dominant hardware platform in many safety- crit-

ical, low-volume applications, including aerospace

and nuclear power plants (NPPs). Modern FPGA

devices feature integrated microprocessor cores,

digital signal processing (DSP) units, memory blocks

and other specialized intellectual properties (IPs).

These advanced devices allow for the implementa-

tion of large, high-performance system-on-chip

(SoC) designs with integrated safety mechanisms,

making a strong case for adoption in additional

safety-critical applications traditionally dominated

by application-specific integrated circuits (ASICs). A

notable example is automotive hardware for AI,

which, driven by the challenges of autonomous

vehicles, must serve the demands of an expanding

range of applications, including sensor data fusion

and processing.

At a high-level, the FPGA and ASIC development

flows are similar. Register- transfer level (RTL)

coding and integration of third-party intellectual

properties (IPs) are crucial steps in the front-end

part of the flow. Extensive functional verification of

the RTL design model reduces the risk of

mismatches between requirements and RTL

behavior. At this stage, specification, coding, and

module integration mistakes are the main source of

systematic faults that, if undetected, could lead to

dangerous failures of the FPGA device in the field.

The RTL model then goes through several imple-

mentation steps (see figure 1). Synthesis and place-

and-route tools map the design onto the target

FPGA device. The bitstream generation step

produces the file used to program the FPGA.

Functional verification of implementation steps, the

focus of this paper, reduces the risk of mismatches

between the derived netlists and the RTL design

model. This is crucial to close the loop and ensure

that the functionality implemented in the FPGA

device matches the hardware requirements.

Figure 1. The FPGA development flow.

The 2016 Wilson Research Group Functional

Verification Study (see figure 2) shows that for a

significant number of FPGA projects one or more

bugs escape into production devices. The same

study also reports that 78% of safety-critical FPGA

designs have bug escapes into production.

Figure 2. Non-trivial bug escapes in FPGA production devices.

FPGA implementation bugs reported on industrial

projects include incorrect FSM re-encoding, wrong

bit ordering in bus connections, incorrect settings

for RAM parameters, routing issues, and introduction

of additional, unspecified logic as well as retiming.

Safety-critical FPGAs

Siemens Digital Industries Software   3

White Paper – The rise and fall of synthesis bugs in safety-critical FPGAs

Besides the cost advantages of FPGAs over ASICs for

low-volume applications, another crucial benefit of

FPGAs is that if, for whatever reason, the final

hardware function needs to be changed, the whole

flow can be repeated, and a new bitstream gener-

ated to re-program the same device without the

large non-recurring engineering (NRE) and fabrica-

tion delay costs of ASICs. However, shipping FPGAs

with functional bugs is not acceptable, particularly

in safety-critical applications.

Functional bugs can be introduced during imple-

mentation steps, either because of RTL issues that

cannot be detected during synthesis, or because of

malfunctions in implementation tools, particularly

synthesis and place-and-route, corrupting the orig-

inal RTL functionality. While engineers may expect

that implementation tools have been extensively

tested prior to release, each design and coding style

is unique and may trigger unknown corner cases.

Simulation-synthesis mismatches

Regardless of the implementation tool used, there

are coding issues that may go undetected during

RTL verification and creep into the synthesis netlist.

As an example, consider a Verilog array indexed

with a signal that may take values outside the

bounds of the array (see figure 3). Indexing an array

signal outside of its bounds creates an “X” during

simulation. In some corner case scenarios, RTL

simulation behavior may not match the behavior of

the corresponding netlist in the presence of

unknown, or X, values. Consequently, while the

synthesis tool operates correctly, its generated

netlist may still not match the intended RTL behavior.

This paper presents an efficient, rigorous verifica-

tion signoff flow that detects functional bugs intro-

duced during FPGA implementation.

Implementation issues in
FPGA flows

Requirement-based testing does not explicitly target

these type of corner cases, which can therefore be

missed. RTL linting tools may warn about these

scenarios. However, they provide neither a definite

answer nor a simulation trace that shows how the

bad scenarios may occur. While valuable, linting

tools give little help with debug and, particularly for

these types of issues, raise many false alarms and

tend to be noisy.

Figure 3. Potential array indexing issue.

Siemens Digital Industries Software   4

White Paper – The rise and fall of synthesis bugs in safety-critical FPGAs

Implementation optimizations

Unlike in ASIC, FPGA implementation tools do not

have a white silicon canvas on which to “draw” the

RTL design. Instead, they must fit the desired func-

tionality into a prefabricated structure while

meeting performance and power consumption

goals. Implementation tools perform significant

changes to the original logic structure of the design

to improve device utilization and overall quality of

results (QoR). Design transformations range from

simple renaming of registers to complex retiming

(see figure 4). Advanced optimizations pose a

higher risk of corrupting the RTL functionality.

Configurable logic blocks (CLBs) contain registers

and lookup tables (LUTs) and are fundamental

building blocks in the FPGA fabric. The CLB elements

are connected through a programmable switch

matrix. The logical function implemented by a LUT

depends on how it is instantiated and parametrized

within the synthesis netlist. Incorrected parametriza-

tion of a LUT corrupts the intended logical function.

FPGAs also contain distributed and block random-ac-

cess memories (RAMs). Synthesis tools use RAMs to

optimize the data path and improve timing. Even for

a simple RTL array, advanced algorithms are

employed to identify the best choice of memory

elements. Moreover, large memories may need to

be mapped into smaller FPGA RAMs, which individu-

ally do not have the word width or addressability

required by the RTL design. This results in compli-

cated correspondences between the RTL and the

synthesis netlist.

The encoding of FSMs states in the RTL design may

also be transformed during synthesis to optimize

power, timing, and device utilization. Synthesis

tools feature multiple re-encoding algorithm that

may perform optimizations that cross hierarchies

and even alter the overall number of states in the

FSM representation.

Certain design styles of shift registers (SR) may

result in the conversion of the SR chain to a memory

block with intelligently modelled control logic to

produce an equivalent behavior. Successive shifting

of the input data in the RTL registers is transformed

to write operations to distinct memory locations in

the netlist. While this transformation smartly utilizes

the available FPGA resources, it also places a great

deal of responsibility on the synthesis tool.

Retiming is another commonly employed optimiza-

tion technique. Its main goal is to improve timing

and increase the clock frequency at which the FPGA

Figure 4. Complexity of FPGA implementation optimizations.

Siemens Digital Industries Software   5

White Paper – The rise and fall of synthesis bugs in safety-critical FPGAs

may operate. As logic functions are moved across

register stages, retiming is also a high-risk design

transformation.

Depending on the target FPGA family and imple-

mentation flow, design optimizations may be

performed during synthesis, initial place-and-route

or even after initial routing, for example to enable

retiming algorithms to leverage more accurate

estimates of connection delays.

Insertion of safety mechanisms

Certain FPGA synthesis tools support the automatic

insertion of hardware safety mechanisms. Safety

mechanisms do not change the design functionality

when no fault is present. In the event of a random

hardware fault occurring during field operation,

they need to raise an alarm and potentially correct

the effects of the fault on the fly.

Synthesis tools may transform the encoding of

FSMs, for example to include Hamming-based error

detection and correction. Triple modular redundancy

(TMR) is another type of safety mechanism where a

critical logic function is triplicated and voting logic

added to determine which of the three outputs

should be considered as correct. Logic duplication

and inference of memories with error correcting

codes (ECC) may also be supported. Users certainly

benefit significantly from these design enhance-

ments that can be performed automatically by the

synthesis tool. However, the inserted logic could

contain bugs and must be rigorously verified.

Traditional verification of implementation steps

Extensive gate-level simulation (GLS) and lab testing

may detect functional bugs introduced during

implementation steps. However, these techniques

have significant shortcomings. An effective verifica-

tion flow must detect bugs as soon as possible once

they are introduced: the later a bug is found the

higher its cost. Detecting an RTL issue or synthesis

bug during lab testing or GLS of the place-and-route

netlist is inefficient. Moreover, the effect of bugs

introduced by implementation tools is unpredict-

able. Simulation tests are not intended to verify the

correctness of the implementation tools, and even

running all available tests at gate-level, which is in

fact impractical in most cases, only provides limited

confidence. This approach cannot be - and is indeed

far from - exhaustive. Finally, debugging GLS and

lab test failures is hard and time consuming.

To reduce the risk of introducing errors, some engi-

neers switch off advanced synthesis optimizations

options and avoid using the latest tool versions. This

approach is inefficient and inadequate for many

modern designs. Moreover, it reveals an overall lack

of confidence in the verification flow.

RTL coding issues and advanced optimizations

during FPGA implementation increase the risk of

introducing bugs. GLS and lab testing are late, slow,

and miss corner-cases. Is there a better solution?

Siemens Digital Industries Software   6

White Paper – The rise and fall of synthesis bugs in safety-critical FPGAs

Formal signoff of FPGA
implementation

Formal methods are widely recognized as a

powerful verification technology. Unlike simulators,

formal tools do not need input vectors and perform

an exhaustive analysis of the design, covering all

possible hardware behaviors and states. The use of

formal tools is well established in ASIC develop-

ment. Formal design inspection and exploration is

valued for detecting both basic and corner-case RTL

issues early and without the need for a simulation

testbench. Moreover, driven by high NRE and fabri-

cation delay costs, for nearly 20 years ASIC develop-

ment teams have routinely applied formal

combinational equivalence checking (EC) as a

superior alternative to GLS to ensure that no func-

tional bugs are introduced during synthesis, place-

and-route, and engineering change orders (ECOs).

Inspection of RTL code

Automated, formal inspection of RTL code detects

issues before synthesis starts. Unlike linting, formal

tools provide a definite answer on whether an array

may be indexed out of bounds. In this case, the

tool provides an easy-to-debug simulation-like trace,

or counterexample, that demonstrates how the

design misbehaves.

DV-Inspect™ from Siemens EDA, a part of Siemens

Digital Industries Software, performs numerous

checks on the RTL design in addition to array out-of-

bounds checks (see figure 5). The tool automatically

creates assertions and verifies those assertions

using formal proof engines. Many of the issues

detected could result in simulation- synthesis

mismatches or other issues that compromise the

functionality of the synthesis netlist.

Automated formal RTL checks
(prior to synthesis)

Array/Range out
of bound

SNPS full case
Negative/Zero
division, expo-
nent, reminder

Function without
return

SNPS parallel
case

X/Z signal/
variable

resolution

X/Z state value Write-write case Arithmetic shifts

Figure 5. Automated formal RTL checks prior to synthesis.

DV-Inspect has been used in hundreds of large

industry designs, including safety-critical FPGAs.

Many DV-Inspect users had no previous experience

with formal tools.

Equivalence checking for FPGAs

Formal EC tools can mathematically prove (or

disprove) that two designs are functionally equiva-

lent. This is the most rigorous way to ensure that

synthesis and other implementation steps have not

introduced bugs. The input design to the implemen-

tation tool is typically named golden design. The

generated netlist is named revised design.

Combinational EC largely relies on one-to-one

mapping of states between golden (e.g., the RTL)

and revised (e.g., post-synthesis netlist) designs.

Through state mapping, the complex problem of

proving that two large designs are functionally

equivalent can be split into a multitude of much

simpler problems: comparing the functionality of

two combinational logic cones (see figure 6).

The design transformations performed by FPGA

implementation tools significantly break one- to-one

state mapping. Formal sequential EC algorithms can

Siemens Digital Industries Software   7

White Paper – The rise and fall of synthesis bugs in safety-critical FPGAs

prove equivalence of sequential logic cones, thus

not requiring state mapping. However, while these

algorithms have improved dramatically in recent

years, they do not scale. Partial state mapping is

necessary to leverage combinational EC wherever

possible and apply sequential algorithms only on

limited design portions (see figure 7). In this

context, identifying corresponding states is a

crucial, challenging task. Manual mapping is

tedious and time-consuming. Mistakes waste

engineering resources.

Figure 7. Proof obligation in sequential and combinational equivalence checking.

EC-FPGA™ performs automated, accurate mapping

through a variety of techniques, including name-

based mapping algorithms, hint-based algorithms

leveraging information provided by synthesis tools,

for example on state re-encoding, and algorithms

that leverage known behavior of implementation

tools for the specific FPGA target device. Advanced

design transformations, including FSM re-encoding

and retiming, are made more amenable to formal EC

through specialized mapping algorithms that iden-

tify high-level relations between sets of golden and

revised states. Finally, FPGA-specific sequential

proof engines cover the areas where no mapping

exists or can be found.

Thanks to these advanced algorithms, Siemens EDA

brings the power of automated formal EC to FPGA

designs. To achieve further device-specific automa-

tion and high performances, Siemens leverages

close partnerships with leading FPGA vendors:

Xilinx, Intel, and Microsemi. However, EC-FPGA

works independently from implementation tools.

The use of hint files and other similar approaches is

conservative in the sense that the information is

used but not trusted to be correct.

Verification of safety mechanisms

Safety mechanism inserted by synthesis tools must

be rigorously verified. EC- FPGA automatically

handles the crucial no-fault scenario, and exhaus-

tively proves that the additional logic does not

change the RTL functionality when no random

hardware fault is present. In addition, engineers

must verify that the safety mechanism functions as

expected when faults occur. The Siemens EDA

platform supports fault injection and verification

through a portfolio of safety analysis and verifica-

tion apps. The level of verification automation

depends on the type of safety mechanism. For

a logic duplication mechanism, for example, the

injection of faults and verification of the output’s

comparator logic can be fully automated through

the Fault Detection Analysis (FDA™) App.

Figure 6. Proof obligation in combinational equivalence checking.

Siemens Digital Industries Software   8

White Paper – The rise and fall of synthesis bugs in safety-critical FPGAs

Figure 8. Functional signoff of FPGA implementation with formal verification.

Formal signoff flow

Formal verification signoff (see figure 8) enables

engineers to use advanced FPGA optimizations and

the latest synthesis technology with confidence.

Formal RTL design inspection is more powerful than

linting and finds issues early, prior to synthesis.

Formal EC proves that the golden design function-

ality is not corrupted by the implementation step.

Finally, formal fault injection and verification,

supported by specialized safety apps, can automate

the verification of safety mechanisms in the

scenarios when faults occur.

With this flow, weeks of GLS and lab testing can be

replaced with hours of formal tool runtime. Siemens

EDA tools share a common platform, do not need a

testbench, and may take as little as a few hours to

set up. Debugging is also much faster as issues are

detected early in the flow, the portion of the design

containing the bug is closely identified, and a simu-

lation-like trace is provided.

Siemens Digital Industries Software   9

White Paper – The rise and fall of synthesis bugs in safety-critical FPGAs

Functional safety standards such as DO-254 for

aerospace applications, IEC 61508, and its deriva-

tives, including ISO 26262 for automotive applica-

tions, require rigorous hardware development

processes that minimize the risk of systematic faults.

Engineers must also demonstrate an adequate level

of confidence in the use of software tools that tailor

or replace activities required by the standard.

Although verification tools may not introduce errors

in the design flow, they may fail to detect errors and

are also covered by these requirements.

Tool safety compliance is a project-specific task.

However, vendors can provide safety certificates and

standard-specific qualification kits that take most of

the burden of safety compliance off the shoulders of

users. In this context, safety compliance support is

an integral aspect of state-of–the-art formal verifi-

cation tools.

Siemens TÜV SÜD certification

EC-FPGA has tool qualification kits (TQKs) that

enable users to meet the tool safety requirements of

ISO 26262, IEC 61508 and EN 50128, without addi-

tional qualification effort, for up to ASIL D (ISO

262626 TCL2 and TCL3 tools) and SIL3 (IEC 61508

and EN 50128 T2 off-line tools) applications.

Siemens EDA engaged with TÜV SÜD, an accredited

global testing, inspection, and certification provider,

to perform a thorough, independent assessment of

its organization, tool development and testing

Compliance with functional
safety standards

processes, as well as an inspection of its develop-

ment facilities. The TÜV SÜD safety certificate

and report form the basis of Siemens EDA’s TQKs.

Each TQK also includes tool documentation, a

safety manual, and a system to track defects and

notify users of newly found tool issues that might

impact safety.

Siemens EDA DO-254 tool qualification kit

DO-254 provides guidance with a require-

ments-based process-oriented approach that signifi-

cantly increases project lifecycle compared to a

non-DO-254 compliant flow. The standard requires

the assessment and, if necessary, qualification of

software tools. Design tools, for example for

synthesis, can introduce errors in the hardware.

Verification tools, on the other hand, can fail to

detect errors. The standard demands are more

stringent for design tools.

The Siemens EDA tools used in the FPGA imple-

mentation functional signoff solution presented

in this paper are verification tools. Depending

on the specific use of the tools and project, compli-

ance can be achieved through independent assess-

ment of the tool outputs or through basic tool

qualification. Siemens EDA provides a customiz-

able DO-254 TQK and project-specific support to

enable low-effort compliance with DO-254 tool

qualification requirements.

Siemens Digital Industries Software   10

White Paper – The rise and fall of synthesis bugs in safety-critical FPGAs

References and further reading
1.		 ISO 26262 Standard – Road vehicles – Functional safety, 2011.

2.		 IEC 61508 International Standard – Functional safety of electrical/electronic/
programmable electronic safety-related systems, 2010.

3.	 RTCA/DO-254 Design assurance guidance for airborne electronic hardware, 2000.

4.	 	DOT/FAA/TC-12/21 Qualification of tools for airborne electronic hardware, 2014.

5.		 Sergio Marchese. Using formal to verify safety critical hardware for ISO 26262, 2017.

6.	 Sergio Marchese. When correct is not enough – Formal verification of fault-tolerant
hardware, 2017.

7.	 J. Grosse, S. Marchese. Shifting the burden of tool safety compliance from users to
vendors, 2018.

FPGAs have long been the hardware platform of

choice in many low-volume safety-critical applica-

tions. Nowadays, these devices can implement

complex functions while fulfilling tough perfor-

mance and power goals, thus competing with ASICs

on high-volume safety-critical applications,

including automotive.

The availability of advanced EDA tools and method-

ology is crucial to support this trend. ASIC develop-

ment has used formal EC for nearly 20 years.

Automated formal checks prior to synthesis are also

widely adopted by ASIC teams. The same technology

Conclusion

is now available in FPGA development, enabling a

robust, efficient implementation process. The

Siemens EDA formal signoff flow of FPGA imple-

mentation is orders of magnitude more rigorous

and efficient than GLS and lab tests. The technology

is mature and proven on hundreds of industrial

designs for communications, NPPs, and other safe-

ty-critical applications. The Siemens EDA tools also

come with TQKs that enable engineers to satisfy the

tool safety compliance requirements of various

functional safety standards, including IEC 61508,

ISO 26262, EN 50128, and DO-254.

Siemens Digital Industries Software   11

White Paper – The rise and fall of synthesis bugs in safety-critical FPGAs

About Siemens Digital Industries Software

Siemens Digital Industries Software is driving transformation to

enable a digital enterprise where engineering, manufacturing

and electronics design meet tomorrow. Xcelerator, the compre-

hensive and integrated portfolio of software and services from

Siemens Digital Industries Software, helps companies of all sizes

create and leverage a comprehensive digital twin that provides

organizations with new insights, opportunities and levels of

automation to drive innovation. For more information on

Siemens Digital Industries Software products and services, visit

siemens.com/software or follow us on LinkedIn, Twitter,

Facebook and Instagram. Siemens Digital Industries Software –

Where today meets tomorrow.

About the author

Sergio Marchese is the Technical Marketing Manager at

Siemens EDA. He brings to this role 18 years of experience in the

semiconductor and electronic design automation (EDA) indus-

tries. Marchese holds a Master of Electronic Engineering degree

from University of Catania, Italy. He has presented at several

industry conferences in Europe and North America and has

published numerous papers.

siemens.com/software

© 2022 Siemens. A list of relevant Siemens trademarks can
be found here. Other trademarks belong to their respective
owners.

84266-D2 2/22 H

Siemens Digital Industries Software

Americas: 1 800 498 5351

EMEA: 00 800 70002222

Asia-Pacific: 001 800 03061910

For additional numbers, click here.

https://www.sw.siemens.com/en-US/
https://www.linkedin.com/organization-guest/company/siemenssoftware
https://twitter.com/siemenssoftware
https://www.facebook.com/SiemensDISoftware
https://www.instagram.com/siemenssoftware/
http://siemens.com/software
https://www.plm.automation.siemens.com/global/en/legal/trademarks.html
https://siemens.com/disw-contact-sales

